期刊文献+

Cubic semisymmetric graphs of order 8p^3 被引量:1

Cubic semisymmetric graphs of order 8p^3
原文传递
导出
摘要 A regular edge-transitive graph is said to be semisymmetric if it is mot vertex-transitive. By Folkman [J. Combin. Theory 3 (1967), 215-232], there is no semisymmetric graph of order 2p or 2p^2 for a prime p, and by Malni6 et al. [Discrete Math. 274 (2004), 18-198], there exists a unique cubic semisymmetrie graph of order 2p3, the so called Gray graph of order 54. In this paper, it is shown that there is no connected cubic semisymmetric graph of order 4p^3 and that there exists a unique cubic semisymmetric graph of order 8p3, which is a Z2 × Z2-covering of the Gray graph. A regular edge-transitive graph is said to be semisymmetric if it is not vertex-transitive.By Folkman [J.Combin.Theory 3(1967),215-232],there is no semisymmetric graph of order 2p or 2p 2 for a prime p,and by Malni et al.[Discrete Math.274(2004),187-198],there exists a unique cubic semisymmetric graph of order 2p 3,the so called Gray graph of order 54.In this paper,it is shown that there is no connected cubic semisymmetric graph of order 4p 3 and that there exists a unique cubic semisymmetric graph of order 8p 3,which is a Z 2 × Z 2-covering of the Gray graph.
出处 《Science China Mathematics》 SCIE 2011年第9期1937-1949,共13页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10871021) the Specialized Research Fund for the Doctoral Program of Higher Education in China (Grant No.20060004026)
关键词 edge-transitive graph semisymmetric graph regular covering 立方 离散数学 边传递 点传递 MOT 灰色 素数
  • 相关文献

参考文献1

  • 1LU Zaiping, WANG Changqun & XU MingyaoLMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Mathematics, Zhengzhou University, Zhengzhou 450052, ChinaPresent address: Department of Mathematics, Qufu Normal University, Qufu 273165, China..On semisymmetric cubic graphs of order 6p^(2)[J].Science China Mathematics,2004,47(1):1-17. 被引量:12

二级参考文献8

  • 1Goldschmidt,D. M.Automorphisms of trivalent graphs[].Annals of Mathematics.1980
  • 2Du Shaofei,XU Mingyao.A classification of semisymmetric graphs of order 2pq, Com[].Communications in Algebra.2000
  • 3Titov,V. K.On symmetry in graphs, Voprocy Kibernetiki 9150, Proc.of Hall Union Seminar on Combinatorial Mathematices (in Russian), part 2, Nauka[].Moscow.1975
  • 4Bouwer,I. Z.On edge but not vertex transitive cubic graphs, Canad.Math[].Bulletin.1968
  • 5Folkman,J.Regular line-symmetric graphs, J.Comb[].Theory Ser B.1967
  • 6Ivanov,A. V.On edge but not vertex transitive regular graphs, Comb[].Annals of Discrete Mathematics.1987
  • 7Bouwer,I. Z.On edge but not vertex transitive regular graphs, J.Comb[].Theory Ser B.1972
  • 8Cameron,P. J.Finite permutation groups and finite simple groups, Bull[].London Mathematical Society.1981

共引文献11

同被引文献1

  • 1LU Zaiping, WANG Changqun & XU MingyaoLMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Mathematics, Zhengzhou University, Zhengzhou 450052, ChinaPresent address: Department of Mathematics, Qufu Normal University, Qufu 273165, China..On semisymmetric cubic graphs of order 6p^(2)[J].Science China Mathematics,2004,47(1):1-17. 被引量:12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部