期刊文献+

亲/疏水纳米结构表面微通道内流体的流动行为

Flow Behavior in Nanostructured Microchannels with Changing Surface Wettability
下载PDF
导出
摘要 在毛细管微通道内壁沉积二氧化硅微球并加以亲/疏水改性,以此来构建亲/疏水纳米结构表面微通道,考察了一定粘度的羧甲基纤维素钠水溶液在光滑亲/疏水微通道和粗糙亲/疏水微通道中的流动行为。结果表明,保持压力恒定,光滑毛细管(基材)中的液体流量随着粘度和管长的增加而减小;粘度一定,压力增加,无论壁面光滑或粗糙,疏水管中的流量均大于亲水管,且粗糙管中疏水/亲水流量斜率比大于光滑管;在低压时亲水管流量大于疏水管,而高压时恰好相反。采用滑移理论和牛顿运动定律对上述现象进行了解释,本研究以期为合理地操控微通道内的流体流动提供有价值的指导。 Deposition in the capillary wall to silica microspheres with changing surface wettahility, in order to build hydrophilic/hydrophobic and nanostructured micro-channels, the preparation of certain viscosity carboxymethy cellulose sodium aqueous solution, its flow behavior in the substrate capillary and the capillary modification were examined. The results show that keeping the pressure constant, the flux of substrate capillary liquid decreases with increasing viscosity, with the tube length increasing. The viscosity is 14cP, as the pressure increasing, the flux of hydrophobic channel is faster than hydrophilic channel, and the rough channel of hydrophobic/hydrophilic flow slope ratio is greater than the smooth. It was also found that liquid in hydrophilic channel flows faster than hydrophobic channel in the low-pressure and high pressure was just the opposite, and the slip theory and Newton's laws of motion were employed to explain the phenomena. The results provide novel and valuable guidance for rationally manipulating fluid in microchannels.
出处 《材料导报》 EI CAS CSCD 北大核心 2011年第16期1-4,共4页 Materials Reports
基金 国家自然科学基金(20706046) 中央高校基本科研业务费专项资金(SWJTU09BR214SWJTU09BR223) 国家大学生创新计划(091061346)
关键词 微通道 亲水/疏水 纳米结构 流动行为 mierochannel, hydrophilicity/hydrophobicity, nanostructure, flow behavior
  • 相关文献

参考文献13

  • 1W. Barthlott,C. Neinhuis.Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta . 1997 (1)
  • 2Watanabe K,Yanuar, Mizunuma H.Slip of Newtonian fluids at slid boundary. JSME, International Journal, Series B: Fluids and Thermal Engineering . 1999
  • 3Wang R,Hashimoto K,Fujishima A,et al.Light-induced amphiphilic surfaces. Nature . 1997
  • 4Shang H M,Wang Y,Limmer S J,et al.Optically transparent superhydrophobic silica-based films. Thin Solid films . 2005
  • 5Watanabe K,Udagawa Y,Ugadawa H.Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. Journal of Fluid Mechanics . 1999
  • 6Sun M,Ebner C.Molecular dynamics study of flow at a fluid-wall interface. Physical Review Letters . 1992
  • 7Choi C.H,Westin K.J.A,Breuer K.S.Apparent slip flows in hydrophilic and hydrophobic microchannels. The Physics of Fluids . 2003
  • 8Thorsen T,Maerkl S J,Quake S R.Microfluidic large-scale integration. Science . 2002
  • 9Whitby M,Quirke N.Fluid flow in carbon nanotubes andnanopipes. Nature Nanotechn . 2007
  • 10Qu J,Perot B,Rothstein J P.Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Physics of Fluids,The . 2004

二级参考文献17

  • 1李淑芬,王补宣,叶大均.对我国“细微尺度传热学”发展战略的建议[J].中国科学基金,1996,10(2):108-111. 被引量:3
  • 2Prismark Partners LLC. Power demands in high end microprocessors [DB/OL]. http: //www. incep, com/ documents/Power/Demands/HighEnd/Prismark. PDF, 2002.
  • 3Jensen K F. Microreaction engineering-is small better? Chem. Eng. Sci., 2001, 56:293-303.
  • 4Peng X F, Peterson G P, Wang characteristics of water flowing microchannels. Experimental Heat 249-264 B X. Frictional flow through Transfer, rectangular 1994, 7:249-264.
  • 5Yu D, Warrington R, Barron R, Ameel T. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes//Proceedings of the AWME/ JSME Thermal Engineering Joint Conference. Maui, Hawaii, 1995, 1:523-530.
  • 6Peng X F, Peterson G P. Convective heat transfer and flow friction for water flow in microchannel structures. Int. J. HeatMass Transfer, 1996, 39 (12): 2599-2608.
  • 7Li Z X, Du D X, Guo Z Y. Experimental study on flow characteristics of liquid in circular microtubes//International Conference on Heat Transfer and Transport Phenomena in Microscale. Banff, Canada, 2000:162-167.
  • 8Gao Xuefeng, Jiang Lei. Striking water repellence by water striders'legs. Nature, 2004, 36:432.
  • 9Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids, 2002, 14: L9.
  • 10Choi C, Westin J A, Breuer K S. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids, 2003, 15:2897.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部