期刊文献+

基于自适应蚁群优化算法的认知决策引擎 被引量:4

Cognitive Radio Decision Engine Based on Adaptive Ant Colony Optimization
下载PDF
导出
摘要 认知决策引擎的设计是认知无线电系统中的一项关键技术,它的主要功能是依据通信环境的变化和用户需求动态地配置无线电工作参数。提出了一种基于自适应蚁群算法的认知决策引擎来实现工作参数的最优化配置。该算法在基本蚁群算法的基础上加入了路径选择机制和信息素挥发因子自适应调整机制,保证了算法的全局搜索能力和收敛速度,有效地避免了容易陷入局部最优解的缺陷。仿真结果表明,在不同的环境下基于该算法的认知引擎比GA和ACO算法具有更好的性能。 Cognitive decision engine is a key technology in cognitive communication system.Cognitive engine can dynamically configure its working parameters according to the changes of communication environment and users' requirement.An adaptive ant colony optimization(AACO) cognitive radio engine was proposed to achieve the optimal configuration working parameters.The novel algorithm based on the basic ant colony algorithm improves the path selection mechanism and adaptively adjusting pheromone decay parameter mechanism.Therefore,it can ensure the global search ability and convergence speed,and effectively avoid falling into local optimization result.Simulation results show that the AACO engine has better performance than GA and ACO engines in different scenarios.
出处 《计算机科学》 CSCD 北大核心 2011年第8期253-256,共4页 Computer Science
基金 华中科技大学博士后基金资助
关键词 认知引擎 蚁群优化算法 自适应策略 Cognitive engine Ant colony optimization(ACO) Adaptive strategy
  • 相关文献

参考文献8

  • 1王越,许全文,黄丽丰.基于改进遗传算法的连续函数优化[J].重庆理工大学学报(自然科学),2011,25(2):62-67. 被引量:10
  • 2史恒亮,白光一,唐振民,刘传领.基于蚁群优化算法的云数据库动态路径规划[J].计算机科学,2010,37(5):143-145. 被引量:20
  • 3Zhang X Q,Huang Y Q,et al.Design of cognitive radio node en-gine based on genetic algorithm. WASEICIE’’09 . 2009
  • 4Zhao N,Li S Y Z L.Cognitive Radio Engine Design Based onAnt Colony Opti mization. Wireless Personal Communications . 2011
  • 5NEWMAN T R,BARKER A B,WYGLINSKI A M,et al.Cognitive engine implementation for wireless multicarrier transceivers. Wiley InterScience,Wireless Communications and Mobile Computing . 2007
  • 6Mitola J.Cognitive Radio for Flexible Mobile Multimedia Communications. Proceedings of the 6th IEEE International Workshop on Mobile Multimedia Communication . 1999
  • 7Coello CAC.Evolutionary multi-objective optimization:A historical view of the field. IEEE Computational Intelligence Magazine . 2006
  • 8Rieser C J.Biologically Inspired Cognitive Radio Engine M odel u-tilizing distributed genetic algorithm s for secure and robust wire-less com m unications and networking. . 2004

二级参考文献16

  • 1刘刚,何麟书.双赌轮选择遗传算法[J].北京航空航天大学学报,2005,31(8):930-933. 被引量:11
  • 2杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 3http://soft. ccw. com. cn/it/.
  • 4www. aco-metaheuristic. org.
  • 5Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by ant colonies[C]//F. J. Varela & P. Bourgin, eds. Proceedings of the First European Conference on Artificial Life. Cambridge, MA, MIT Press: 134-412.
  • 6Minton S, Johnston. Minimizing conflicts: A heuristic repair me -thod for constraint satisfaction and scheduling problems[J]. Artificial Intelligence, 1992.
  • 7Reischle M F, Schmeck H. Multi colony ant algorithms[J]. Journal of Heuristics, 2002.
  • 8Dorigo M, Stutzle T. Ant Colony Optimization. 2007.
  • 9www. isi. edu/nsnam/ns/.
  • 10Holland J H. Adaptation in Natural and Artificial Sys-tems [M]. Ann Arbor: University of Michigan Press, 1992.

共引文献28

同被引文献30

  • 1王珺,曹涌涛,糜正琨.无线传感器网络Mobile Agent路由问题的模拟退火解法[J].南京邮电大学学报(自然科学版),2007,27(1):64-68. 被引量:6
  • 2WANG BEIBEI, LIU K J R. Advances in cognitive radio networks: A survey[ J]. IEEE Journal of Selected Topics in Signal Processing, 20ll, 5(1): 5-23.
  • 3HE A, BAE K K, NEWMAN, T R, et al. A survey of artificial in- telligence for cognitive radios[ J]. IEEE Transactions on Vehicular Technology. 2005, 59(4) : 1578 - 1592.
  • 4ZHANG XIAO-QIN, HUANG YU-QING, JIANG HONG, et al. Design of cognitive radio node engine based on genetic algorithm [ C]/! WASE International Conference on Information Engineering. Piscataway: IEEE, 2009:22 -25.
  • 5CHANTARASKUL S, MOESSNER K. hnplementation of a genetic algorithm-based decision making framework for opportunistic radio [ J]. lET Communications 2010, 4(5) : 495 - 506.
  • 6POVALAC K, MARSALEK R. Adjusting of the multicarrier corn-munication system using binary particle swarm optimization [ C]// Proceedings of 19th International Conference on Radioelektronika. Piscataway: IEEE, 2009:251-254.
  • 7LIU YONC;, JIANG HON(,, HUANG YUQINL;. Design of cognitive radio wireless parameters based on multi-objective immune genetic algorithm[ C]// International Conference on Communications and Mobile Computing. Piscataway: 1EEE, 2009:92-96.
  • 8ZHAO NAN, LI SHUYING, WU ZHULU. Cognitive radio engine design based on ant colony optimization[ J]. WireLess Personal Com- munications, 2012, 65(1): 15-24.
  • 9MUHAMMAD W, CAI A. Cognitive radio parameter adaptation in multicarrier environment [ C]// Proceedings of 15th International Conference on Wireless and Mobile Communications, Cannes. Washington, DC: IEEE Computer Society, 2009:391-395.
  • 10SOUZA S, SUYKENS J A, VANDEWALLE J, et al. Coupled simulated annealing[ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(2):320-335.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部