期刊文献+

基于直线射影特征的摄像机参数标定方法 被引量:4

Camera Calibration Based on Projective Lines
下载PDF
导出
摘要 对于精度要求高、成本低或使用广角镜头的系统,在标定摄像机参数时需要校正镜头畸变。通常在摄像机标定算法中,镜头畸变参数的校正和摄像机参数求解都结合在一起,增加了算法的复杂性,并且依赖标定模板。针对以上问题,提出了一种新的标定方法,即不需要标定模板,也不需要确定空间点的精确坐标。首先通过直线的射影不变性校正镜头畸变参数,再根据直线的正交性标定摄像机内参数。仿真实验和真实图像实验结果表明,在直线特征明显的场合,该方法精度高,可靠有效。 In low cost cameras and wide-angle cameras,lens distortion should be calibrated.In traditional methods,ca-mera's interior parameters and lens distortion are calibrated together.In this work,we presented a method to calibrate distortion and camera's parameters,without any calibration objects and 3D coordinates.Lens distortion was corrected based on the projective invariant of straight lines,orthogonal straight lines were used to calibrate camera's interior parameters.The accuracy and availability of the method were verified on the experimental result of simulation and real data.
出处 《计算机科学》 CSCD 北大核心 2011年第8期272-274,共3页 Computer Science
基金 国家高技术研究发展计划863项目(2007AA01Z160) 国家自然科学基金项目(60775042)资助
关键词 机器视觉 摄像机标定 畸变校正 直线特征 Machine vision Camera calibration Distortion calibration Line
  • 相关文献

参考文献2

二级参考文献25

  • 1李为民,俞巧云,刘超.采用分离式差分标定靶的单摄像机标定方法[J].光学学报,2006,26(5):697-701. 被引量:26
  • 2吴庆阳,苏显渝,向立群,李勇.线结构光双传感器测量系统的标定方法[J].中国激光,2007,34(2):259-264. 被引量:33
  • 3邱志强.一种高精度摄像机标定法[J].工程图学学报,2001,.
  • 4R. Y. Tsai. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEEJ. Robot. Aurora., 1987, RA-3(4) : 323-344.
  • 5J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracy evaluation [J]. IEEE Trans. Pattern Anal. Mach. , 1992, 14(10): 965-980.
  • 6De Xu, You Fu Li, Min Tan. Method for calibrating cameras with large lens distortion [J]. Optical Engineering, 2006, 45(4) : 043602-1-043602-8.
  • 7YU Zhou, Bradley J. Nelson. Calibration of a parametric model of an optical microscope[J]. Opt. Engng. , 1999, 38 (12): 1989-1995.
  • 8D. C. Brown. Close-range camera calibration[J]. Photogramm.Engng., 1971, 37(8): 855-866.
  • 9S. B. Kang. Semiautomatic methods for recovering radial distortion parameters from a single image[J]. Cambridge Res. Lab. , Tech. Rep. , 1997, CRL 97/3:1-21.
  • 10F. Devernay, O. Faugeras. Straight lines have to be straight: automatic calibration and removal of distortion from scenes of structured environments[J]. Mach. Vis. Appl., 2001, 13(1): 14-24.

共引文献46

同被引文献53

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部