期刊文献+

山橿药材中银松素含量近红外定量模型的建立 被引量:5

Establish the Quantitative Model of 3,5-didroxystilbene in Lindera reflexa Hemsl by Near-infrared Spectroscopy
原文传递
导出
摘要 目的:建立山橿药材中银松素含量的近红外(Near infrared,简称NIR)定量模型,准确快速的测定山橿药材中银松素的含量.方法:利用近红外漫反射光谱法结合TQAnalyst 8.0软件,建立银松素的定量模型.结果:建立的银松素含量定量模型的相关系数(R2)、校正均方差(RMSEC)分别为0.993 65,0.110。结论:方法操作简单,测定结果准确,能快速有效的测定山橿药材中银松素的含量。 Objective:To establish a quantitative model of 3,5-didroxystilbene in Lindera reflexa so as to determine the content of 3,5-didroxystilbene fast and accurately.Method: A quantitative model was established by NIR and TQ Analyst8.0 software.Result: The correlation coefficients(R2) and the root-mean-square error of calibration(RMSEC) of the quantitative model for 3,5-didroxystilbene were 0.993 65 and 0.110 respectively.Conclusion: This method is used easily,and the result is accurate.It can determine the content of 3,5-didroxystilbene in Lindera reflexa quickly and effectively.
机构地区 河南中医学院
出处 《中国实验方剂学杂志》 CAS 北大核心 2011年第17期75-77,共3页 Chinese Journal of Experimental Traditional Medical Formulae
基金 河南省重点科技攻关计划(082102330026) 河南省教育厅科技攻关项目(2008A360016)
关键词 山橿 银松素 近红外光谱 定量模型 Lindera reflexa 3 5-didroxystilbene NIR quantitative model
  • 相关文献

参考文献3

  • 1河南省卫生厅.河南省药品标准[s].郑州:河南科学技术出版社,1984.157.
  • 2刘雯霞.山檀化学成分及质量标准的研究[D].中国优秀博硕士学位论文全文数据库(硕士),2006,(02).
  • 3中国药典一部[S].2010年:32.

共引文献956

同被引文献39

  • 1白雁,刘建营,雷敬卫,谢彩侠,陈志红,龚海燕.近红外光谱技术快速测定杞菊地黄丸的水分含量[J].中国现代应用药学,2013,30(1):52-54. 被引量:10
  • 2褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:565
  • 3杨欣,贺浪冲,王娜,吴少平,郑旭.近红外漫反射光谱法测定阿奇霉素分散片的含量[J].中国抗生素杂志,2007,32(9):550-552. 被引量:7
  • 4Chong IG,Jun CH. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 2005, 78(1-2):103-112.
  • 5Lindgren F, Geladi P,Rnnar S, et al. Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms. Journal of Chemometrics, 1994, 8(5):349-363.
  • 6Olah M,C Bologa, TI Oprea. An automated PLS search for biologically relevant QSAR descriptors. Journal of Computer-Aided Molecular Design, 2004, 18(7):437-449.
  • 7Sorol N, Arancibia E, Bortolato SA, et al. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods. Chemometrics and Intelligent Laboratory Systems, 2010, 102(2):100-109.
  • 8Gosselin R, D Rodrigue, C Duchesne. A Bootstrap - VIP approach for selecting wavelength intervals in spectral imaging applications. Chemometrics and Intelligent Laboratory Systems, 2010, 100(1)-12-21.
  • 9Vannucci M, N Sha,PJ Brown. NIR and mass spectra classification: Bayesian methods for wavelet - based feature selection. Chemometrics and Intelligent Led)oratory Systems, 2005, 77(1-2):139-148.
  • 10Li H,Liang Y,Xu Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration .Analytic a Chimica Acta, 2009, 648(1)^77-84.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部