期刊文献+

油菜氮素的多光谱图像估算模型研究 被引量:10

Multi-Spectral Images Estimation Models for Nitrogen Contents of Rape
下载PDF
导出
摘要 【目的】充分利用可见光、近红外多谱段图像的反射强度分布信息进行油菜氮素诊断,实现对油菜氮素水平的定量估算,为油菜营养的科学管理提供理论依据和技术支撑。【方法】利用多光谱CCD获取不同氮素水平的油菜冠层图像,采用中值滤波法对图像进行预处理;通过二维最大信息熵阈值分割法对多光谱图像进行背景分割;对多光谱图像的均值和比值、差值融合特征进行提取。【结果】通过相关分析,发现ARV1、AVS560、ADV1、AVS660、g等特征在整个生长期与油菜氮素的相关性均较高,考虑到多光谱变量间存在的多重共线性影响,利用逐步回归法建立了不同生长期油菜氮素的多光谱图像特征预测模型。【结论】初步探明了不同生育时期油菜氮素的多光谱图像特征,实现了采用多光谱图像技术对油菜氮素水平的定量估算。 【Objective】Multi-spectral image analysis method was used to quantitatively analyze the rape total nitrogen content.【Method】The images of rape canopy were taken by the multi-spectral camera and were preprocessed by the median-filtering method.Two-dimensional maximum entropy segment method was used to complete background segmentation of multi-spectral images.【Result】 By extracting mean and ratio of multi-spectral images of rape canopy,it was found that the features of ARV1,AVS560,ADV1,AVS660 and g are highly correlated with nitrogen content in the whole growth period.Considering the serious multicollinearity between multi-spectral variable,the prediction model of nitrogen content of rape at different growth stages was built by stepwise regression method.【Conclusion】The reflection intensity distribution information of the visible light and the near infrared light is sufficiently utilized in this research to diagnose the nitrogen content of rape.The multi-spectral image features of the nitrogen content of rape at different growth stages were preliminarily verified.The result shows that the method of multi-spectral image analysis can be used to quantitatively analyze the rape total nitrogen content.This provides a theoretical basis and technical support for the scientific management of rape nutrition.
出处 《中国农业科学》 CAS CSCD 北大核心 2011年第16期3323-3332,共10页 Scientia Agricultura Sinica
基金 国家自然科学基金项目(61075036) 中国博士后科学基金(20100481097) 江苏高校优势学科建设工程资助项目(苏财教(2011)8号) 江苏省农业装备与智能化高技术研究重点实验室资助项目(BM2009703) 江苏省高校自然科学基础研究重大项目(10KJA210010) 江苏大学高级专业人才基金项目(10JDG081) 江苏大学博士后基金项目(201009)
关键词 油菜 氮素 多光谱图像 逐步回归 rape nitrogen multi-spectral image stepwise regression
  • 相关文献

参考文献27

  • 1Ahmad I S, Reid J F. Evaluation of color representation for maize image. Journal of Agricultural Engineering Research, 1996, 63: 185-196.
  • 2Goel P, Prasher S, Landry J, Patel R, Bonnell R, Viau A, Miller J. Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and Electronics in Agriculture, 2003, 38: 99-124.
  • 3Jia L L, Cheng X P. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition, 2004, 27 (3): 441-450.
  • 4Mirik M, Michels G, Kassymzhanova M S, Elliott N, Catana V, Jones D, Bowling R. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Computers and Electronics in Agriculture, 2006, 51: 86-98.
  • 5Noh H, Zhang Q, Shin B, Han S, Feng L. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosystems Engineering, 2006, 94 (4): 477-485.
  • 6Karimi Y, Prasher S, Patel R, Kimb S. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture, 2006, 51: 99-109.
  • 7Reum D, Zhang Q. Wavelet based multi-spectral image analysis of maize leaf chlorophyll content. Computers and Electronics in Agriculture, 2007, 56: 60-71.
  • 8Wu J D, Wang D, Carl J, Marvin E. Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 2007, 101: 96-103.
  • 9Pagola M, Ortiz R, Irigoyen I. New method to assess barley nitrogen nutrition status based on image color analysis comparison with SPAD-502. Computers and Electronics in Agriculture, 2009, 65(3): 213-218.
  • 10Wiwart M, Fordon G, Krystyna Z, Suchowilskaa E. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis. Computers and Electronics in Agriculture, 2009, 65: 125-132.

二级参考文献159

共引文献389

同被引文献170

引证文献10

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部