期刊文献+

基于变邻域分布估计算法的数传资源配置优化 被引量:4

Optimal allocation of ground station data transmission resources based on variable neighborhood estimation of distribution algorithms
原文传递
导出
摘要 分析了地面站数传资源分配中的影响因素,建立了问题的约束优化模型,提出了变邻域搜索与分布估计相结合的优化算法.算法在概率模型和种群个体两个层次分别设计了邻域结构,以提高算法的全局搜索能力和局部优化能力,并避免优化过程陷入局部极值.构建了变邻域分布估计算法的优化流程,推导证明了算法的收敛性.利用仿真算例分别对算法性能及控制参数选择进行了分析,实验结果表明,算法能够有效地解决数传资源配置优化问题,且求解精度较高. Three constrained optimization models were built based on the analysis of influence factors in the problem of optimal allocation of ground station data transmission resources,and a hybrid method which combines estimation of distribution algorithms with variable neighborhood searching(VNS-EDAs) was proposed.Neighborhood structures that can avoid premature convergence were designed in both probability distribution level and population individual level to improve the capability of global exploitation and local exploration.The process of VNS-EDAs was presented,and the convergence of VNS-EDAs was proved with finite population.Simulation examples were designed to analysis the validity and parameters selection of VNS-EDAs.Experiment results show the VNS-EDAs can solve the problem of optimal allocation of ground station data transmission resources effectively,and has the advantage of precious solution.
作者 常飞 武小悦
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第8期1546-1554,共9页 Systems Engineering-Theory & Practice
关键词 地面站 数传资源 配置优化 分布估计算法 变邻域搜索 ground station data transmission resources optimal allocation estimation of distribution algorithms variable neighborhood search
  • 相关文献

参考文献15

  • 1唐枚,李济生.近地航天器测控设备分配策略[J].宇航计测技术,2001,21(2):51-54. 被引量:7
  • 2王远振,高卫斌,聂成.多星地面站系统资源配置优化研究综述[J].系统工程与电子技术,2004,26(4):437-439. 被引量:19
  • 3吴斌,黄学祥,黄永宣.中低轨道卫星多星测控存在的问题及其改进措施[J].宇航学报,2003,24(6):629-633. 被引量:8
  • 4杨永安 ,李建成 ,骆永进 ,冯祖仁 ,汪波 .航天测控资源应用现状及综合利用研究[J].飞行器测控学报,2005,24(2):1-6. 被引量:3
  • 5金光,武小悦,高卫斌.卫星地面站资源配置仿真研究[J].系统仿真学报,2004,16(11):2401-2403. 被引量:32
  • 6Larranaga P, Lozano J A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation[M]. Boston: Kluwer Academic Publishers, 2002.
  • 7Luis D, Jose A G, Juan L M, et al. Avoiding premature convergence in estimation of distribution algo- rithms[C]//IEEE Congress on Evolutionary Computation, Washington: IEEE Press, 2009: 455-462.
  • 8Cho D Y, Zhang B T. Evolutionary continuous optimization by distribution estimation with variational Bayesian independent component analyzers mixture model[C]//Lecture Notes in Computer Science, Heidelberg: Springer Berlin, 2004:212 221.
  • 9Pena J M, Robles V, Larranaga P, et al. GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms[C]//Lecture Notes in Computer Science, Heidelberg: Springer Berlin, 2004:361 371.
  • 10Laurent G, Rodolphe L R, Raphael T H. A study of the effects of dimensionality on stochastic hill climbers and estimation of distribution algorithms[C]//Lecture Notes in Computer Science, Heidelberg: Springer Berlin, 2004: 27 38.

二级参考文献38

  • 1王远振,赵坚,聂成,高卫斌.卫星地面站设备配置效能评价指标体系研究[J].军事运筹与系统工程,2003,17(1):59-64. 被引量:10
  • 2钟伟才,刘静,刘芳,焦李成.基于Kalman滤波的Helmholtz机进化算法[J].电子与信息学报,2004,26(8):1190-1195. 被引量:1
  • 3金光,武小悦,高卫斌.卫星地面站资源配置仿真研究[J].系统仿真学报,2004,16(11):2401-2403. 被引量:32
  • 4张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 5DeGroot M. Optimal Statistical Decision. New York:McGraw-Hill, 1970: 155- 189.
  • 6Baluja S. Population-based incremental learning: A method for integrating genetic searching based function optimization and competing learning. Carnegie Mellon University, CMU Tech. Rep.CMU-CS-94-163: 1994.
  • 7Muhlenbein H. The equation for response to selection and its use for prediction. Evolutionary Computation, 1998, 5(3): 303 - 346.
  • 8De Bonet J S, Isbell C L, Viola P. MIMIC: Finding optima by estimating probability density. Advances in Neural Information Processing System, Cambridge: The MIT Press, 1997, Vol.9:424 - 431.
  • 9Peliken M, Muhlenbein H. The bivariate marginal distribution algorithm, in R. Roy, T. Furnhashi, P. K. Chandhery. eds.,Advance in Soft Computing Engineering Design and Manufacturing, London: Springer-Verlag, 1999:521 - 535.
  • 10Pelikan M, Goldberg D E, Cantu-Paz E. BOA: the Bayesian optimization algorithm. Proceeding of the Genetic and Evolutionary Computation Conference, Orlando: Morgan Kaufmann, 1999:525 - 532.

共引文献78

同被引文献55

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部