期刊文献+

非线性Schrdinger方程(Ⅰ):Bose-Einstein凝聚和怪波现象 被引量:7

Nonlinear Schrdinger Equation(Ⅰ):Bose-Einstein Condensation and Rogue Waves
原文传递
导出
摘要 非线性Schr(o|¨)dinger方程是非线性科学领域的最基本的方程之一,本文综述该方程的两个有趣的现象:怪波和Bose-Einstein凝聚,最后提出一些相关的公开问题. Nonlinear Schrodinger equation(NLS) is one of the most fundamental equation in the theory of nonlinear sciences. In this paper, we survey some recent progress on the rogue wave and Bose-Einstein condensation phenomena of NLS, and some open problems related to NLS are presented.
作者 郭柏灵
出处 《数学进展》 CSCD 北大核心 2011年第4期393-399,共7页 Advances in Mathematics(China)
关键词 非线性SCHRODINGER方程 Bose—Einstein凝聚 怪波 孤立子 nonlinear Sehrodinger equation Bose-Einstein condensation rogue wave soliton
  • 相关文献

参考文献8

  • 1Ankiewicz, A., Clarkson, P.A., Akhmediev, N., Rogue waves, rational solutions, the Patterns of their zeros and integral ralations, J. Phys. A: Math. Theor., 2010, 43: 122002.
  • 2Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M., Rogue waves and rational solutions of the nonlinear Schrodinger equation, Phys. Rev. E., 2009, 80: 026601.
  • 3Lin F., Lin T.C., Vortices in two dimensional Bose-Einstein Condensates. Geometry and nonlinear par- tial differential equations, Hangzhou, 2001, 87, 114, AMS/IP Stud. Adv. Math. 29, Amer. Math. Soc. Providence, RI, 2002.
  • 4Chen J., Guo B., Strong instability of standing waves for a nonlocal Schrodinger equation, Physica D, 2007, 227: 142-148.
  • 5Guo B., Ling L., General rational solutions and novel soliton solutions for the nonlinear Schrodinger equation, Submitted.
  • 6谷超豪,郭柏灵等.孤立子理论及其应用,第一章,杭州:浙江科技出版社,1999.
  • 7Chen C. and Guo B., Solution theory of the coupled time-dependent Ginzburg-Landan equations, Interna- tional Journal of Dynamical Systems and Differential Equations, 2009, 2.
  • 8Yah Z., Financial rogue wave, Commun. Theor. Phys., 2010, 54: 947-949.

同被引文献28

  • 1Ablowitz M J, Clarkson P A. 1991. Solitons, Nonlinear Evolution E-quation and Inverse Scattering[ M] . Cambridge : Cambridge University Press.
  • 2Ablowitz M J, Prinari B, Trubatch A D. 2004. Discrete and Continuous Nonlinear Schrodinger Systems [ M]. Cambridge : Cambridge University Press.
  • 3Akhmediev N, Ankiewicz A. 2011. Modulation instability, Fermi-Pas-ta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation [ J]. Physical Review E,83 (4): 046603-10.
  • 4Ankiewicz A, Akhmediev N, Soto-Crespo J M. 2010. Discrete roguewaves of the Ablowitz-Ladik and Hirota equations[ J]. Physical Review E, 82(8) : 026602-7.
  • 5Geng X G,Dai H H,Zhang J Y. 2007. Decomposition of the discrete Ablowitz-Ladik hierarchy [ J ]. Studies in Applied Mathematics, 118 (3) : 281-312.
  • 6Guo B L, Ling L M. 2011. Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrodinger Equations[ J]. Chinese Physics Letters, 28(11) : 110202-4.
  • 7Hirota R. 1971. Exact solution of the KdV equation for multiple collisions of solitons[ J]. Physical Review Letters, 27( 18) : 1192- 4.
  • 8Zhang D J,Chen S T. 2010. Symmetries for the Ablowitz - Ladik Hierarchy :Part I. Four-Potential Case [ J ]. Studies in Applied Mathematics, 125(4) : 393-418.
  • 9Zhang D J, Chen S T. 2010. Symmetries for the Ablowitz - Ladik Hierarchy :Part II. Integrable Discrete Nonlinear Schrodinger Equations and Discrete AKNS Hierarchy[ J]. Studies in Applied Mathematics, 125(4) : 419-443.
  • 10梁宗旗.具有波动算子的非线性Schrdinger方程的有限差分法[J].黑龙江大学自然科学学报,1998,15(1):1-4. 被引量:9

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部