摘要
李超代数L的一个子代数B称为c-可补的,若存在L的一个理想B使得L=B+C和B∩C(?)B_L,此处B_L是包含在B且为L的理想中最大的一个,本文把c-可补子代数理论发展到李超代数,并利用它们得到了可解李超代数的一些刻画.同时也得到了E-李超代数的一些性质.
A subalgebra B of a Lie superalgebra L is called a c-supplemented of L if there is an ideal C of T such that L= B +C and B ∩ C lohtain in BL, where BL is the largest ideal of L contained in B. We develop initially c-supplemented subaigebras for a Lie superalgebra and make use of them to give some characterizations of a solvable Lie superalgebra. Moreover, we obtain some properties of an E-Lie superalgebra.
出处
《数学进展》
CSCD
北大核心
2011年第4期407-412,共6页
Advances in Mathematics(China)
基金
Supported by NSFC(No.10701019 and No.10871057)
Scientific Research Foundation for Returned Scholars Ministry of Education,the Fundamental Research Funds for the Central Universities and Project of Educational Committee of Heilongjiang Province of China(No.11551542)
关键词
李超代数
c-可补子代数
E-李超代数
Lie superalgebras
c-supplemented subalgebras
E-Lie superalgebra