期刊文献+

具多时滞的二阶非线性差分方程解的振动性

Oscillation of Certain Second Order Nonlinear Difference Equations with Many Delays
原文传递
导出
摘要 研究了一类具有多个时滞的二阶非线性差分方程,利用数学归纳法和Lebesgue控制收敛定理得出了其有界解振动的充分必要条件及其任一解与解的差分振动的充分条件,所得结果包含和推广了已有的结果. Oscillation of certain second order nonlinear difference equations with many delays are studied, using mathematical induction and lebesgue deminated convergence theorem, necessary and sufficient conditions are obtained for oscillation of bounded solutions,and sufficient conditions are obtained for oscillation of any solution and its difference. Our results contain and extend the existing results in the literature.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第16期232-239,共8页 Mathematics in Practice and Theory
基金 安徽省自然科学基金(10040606Q18) 安徽农业大学青年科学基金(2010zr11)
关键词 时滞 非线性 差分方程 振动性 delay nonlinear difference equations oscillation
  • 相关文献

参考文献7

  • 1唐先华,庾建设.非线性时滞差分方程的线性化振动性[J].数学学报(中文版),2002,45(3):517-518. 被引量:3
  • 2武延树,张全信,燕居让.一类二阶非线性差分方程的振动性与渐近性[J].数学的实践与认识,2009,39(11):217-222. 被引量:4
  • 3张振国,俞元洪.一类非线性二阶差分方程解的振动性[J].Journal of Mathematical Research and Exposition,1999,19(4):699-703. 被引量:9
  • 4Zhang B G. Oscillation and asymptotic behavior of second order difference equations[J]. J Math Anal Appl, 1993, 173: 58-68.
  • 5Kulenovic M R S. Budincevic. Asymptotic analysis of nonlinear second order difference equations[J]. An Stin Univ Iasi, 1984, 30: 39-52.
  • 6Wong P J Y, Agarwal R P. Oscillation theorems and existence of positive monotone solutions for s econd order nonlinear difference equations[J]. Mathl Comput Modelling, 1995, 21(3): 63-84.
  • 7Tang X H, Yu J S. Oscillation of nonlinear delay difference equations[J].J Math Anal Appl, 2000, 249(2): 476-490.

二级参考文献11

  • 1Agarwal R P. Difference Equations and Inequalities[M]. Marcel Dekker, New York,1992.
  • 2Lakshmikantham V, Trigiante D. Difference Equations with Applications to Numerical Analysis[M]. Academic Press, New York,1988.
  • 3Bing Liu, Jurang Yan. Oscillatory and asymptotic behaviour of second order nonlinear difference equations[J]. Proc Edin Math Soc,1996,39:525-533.
  • 4Wong P J Y, Agarwal R P. Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations[J]. Mathl Comput Modelling, 1995,21 : 63-84.
  • 5Zhang B G. Oscillation and asymptotic behavior of second order difference equations[J]. J Math Anal Appl, 1993, 173:58-68.
  • 6Kulenovic M R S, Budincevic. Asymptotic analysis of nonlinear second order difference equations[J]. An Stin Univ Iasi, 1984.30 : 39-52.
  • 7Ceechi M, Marini M. Oscillatory and nonoscillatory behavior of a second order functional differential equation[J]. Rocky Mount J Math,1992,22:1259-1276.
  • 8YuV Rogovchenko. On oscillation of a second order nonlinear delay differential equation[J]. Funkcial Ekvac,2000, 43:1-29.
  • 9Ladde G S, Lakshmikantham V, Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments[M]. Marcel Dekker, New York,1987.
  • 10Wang Z,Funkcial Ekvac,1991年,34卷,313页

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部