摘要
对于简单图G=〈V,E〉,如果存在一个映射f:V(G)→{0,1,2,…,2 |E|-1}满足1)对任意的u,v∈V,若u≠v,则(u)≠f(v);2)max{f(v)|v∈V}=2|E|-1;3)对任意的e_1,e_2∈E,若e_1≠e_2,则g(e_1)≠g(e_2),此处g(e)=|f(u)+f(v)|,e=uv;4){g(e)|e∈E}={1,3,5,…,2|E|-1},则称G是奇优美图,f称为G的奇优美标号.Gnanajoethi提出了一个猜想:每棵树都是奇优美的.证明了图P_(r,(2s-1)是奇优美图.
Let G →(V,E) be a simple graph. If there exist a mapping f : V(G) → {0, 1, 2,… , 2 |E|-1} satisfied 1) axbitary u, v ∈ V, if u ≠ v,then f(u) ≠ f(v); 2) max{f(v) |v ∈ V) = 2 |E|- 1; 3) axbitary e1, e2 ∈ E, if e1 ≠ e2, then g(e1) ≠ g(e2), where g(e) = |f(u) +f(v)|, e = uv., 4) {g(e) |e ∈ E) = {1, 3, 5,… , 2 |E|- 1), then G is called odd graceful graph, f is called odd graceful labeling of G. Mr. Gnanajoethiproposed a conjecture that every tree is odd graceful. In this paper, we proved that graph Pr,(2s-1) are odd graceful graphs.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第16期255-258,共4页
Mathematics in Practice and Theory