期刊文献+

关于P_(r,(2s-1))的奇优美标号

Odd Graceful Labeling of Graph P_(r,(2s-1))
原文传递
导出
摘要 对于简单图G=〈V,E〉,如果存在一个映射f:V(G)→{0,1,2,…,2 |E|-1}满足1)对任意的u,v∈V,若u≠v,则(u)≠f(v);2)max{f(v)|v∈V}=2|E|-1;3)对任意的e_1,e_2∈E,若e_1≠e_2,则g(e_1)≠g(e_2),此处g(e)=|f(u)+f(v)|,e=uv;4){g(e)|e∈E}={1,3,5,…,2|E|-1},则称G是奇优美图,f称为G的奇优美标号.Gnanajoethi提出了一个猜想:每棵树都是奇优美的.证明了图P_(r,(2s-1)是奇优美图. Let G →(V,E) be a simple graph. If there exist a mapping f : V(G) → {0, 1, 2,… , 2 |E|-1} satisfied 1) axbitary u, v ∈ V, if u ≠ v,then f(u) ≠ f(v); 2) max{f(v) |v ∈ V) = 2 |E|- 1; 3) axbitary e1, e2 ∈ E, if e1 ≠ e2, then g(e1) ≠ g(e2), where g(e) = |f(u) +f(v)|, e = uv., 4) {g(e) |e ∈ E) = {1, 3, 5,… , 2 |E|- 1), then G is called odd graceful graph, f is called odd graceful labeling of G. Mr. Gnanajoethiproposed a conjecture that every tree is odd graceful. In this paper, we proved that graph Pr,(2s-1) are odd graceful graphs.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第16期255-258,共4页 Mathematics in Practice and Theory
关键词 奇优美图 奇优美标号 图Pr (2s-1) odd graceful graph odd graceful labeling graph Pr,(2s-1)
  • 相关文献

参考文献8

  • 1GALLIAN A. A dynamic survey of graph labeling[J]. The Electronic Journal of Combinatorics, 2007(14): 1-18.
  • 2MA Kejie. Graceful Graph[M]. Beijing: Peking University press, 1991.
  • 3RINGEL G. Problem 25 in theory of graphs and its application [C]//Proc. Symposium Smolenice, 1963, 162.
  • 4Rosa A. On certain valuations of vertices of a graph [C]//Theory of Graphs, Proc Internat Sympos, Rome, 1966: 349-355.
  • 5GolomB S W. How to Number a Graph [M]. Graph Theory and Computing, New York: Academic press, 1972: 23-37.
  • 6GALLIAN A. A guide to the graph labeling Zoo[J]. Discrete Mathematics, 1994, 49: 213-229.
  • 7KATHIE SAN KM. Two classes of graceful traphs[J]. Ars Combinatioria, 2000, 55: 129-132.
  • 8Bondy A and Murty USR. Graph Theory with Application[M]. The Macmillan Press Ltd, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部