期刊文献+

鲁棒拉普拉斯特征映射算法 被引量:4

Robust Laplacian eigenmap
下载PDF
导出
摘要 研究拉普拉斯特征映射算法(Laplacian eigenmap,LE)对离群点的敏感性,提出一种具有鲁棒性的拉普拉斯特征映射算法(robust Laplacian eigenmap,RLE)。该方法在离群点检测的基础上,利用鲁棒PCA算法(robustPCA,RPCA)对离群点进行局部光滑化处理,将离群点和其邻域投影到低维的局部切空间上,再构造能够准确反映离群点局部邻域关系的对应权值,减少离群点对Laplacian矩阵的影响。模拟实验和实际例子都证明,通过这种方法构造的鲁棒拉普拉斯特征映射算法,对于离群点具有良好的鲁棒性。 This paper focused on the sensitivity of Laplacian eigenmap(LE) to outliers,and presented a robust Laplacian eigenmap(RLE).RLE was base on the outlier detection,projected the outliers and their neighbors to the low-dimensional tangent space with the robust PCA method.In the low-dimensional tangent space,RLE constructed the to weight graph connected the outliers and their neighbors,which could reflect the intrinsic local geometry of the outliers.The algorithm reduced the impact of outliers on the Laplacian matrix.Simulation and real examples show that RLE is robust against outliers.
作者 戴志波 王靖
出处 《计算机应用研究》 CSCD 北大核心 2011年第9期3249-3252,共4页 Application Research of Computers
基金 国家自然科学青年基金资助项目(10901062) 福建省自然科学基金资助项目(2010J01336)
关键词 拉普拉斯特征映射 鲁棒 离群点 流形 Laplacian eigenmap robust outlier manifold
  • 相关文献

参考文献1

  • 1Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding. Science . 2000

同被引文献34

  • 1谭璐,吴翊,易东云.稳健局部线性嵌入方法[J].国防科技大学学报,2004,26(6):91-95. 被引量:13
  • 2Roweis S T, Lawrance K S. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290: 2323 -2326.
  • 3Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290:2319-2323.
  • 4Lawrence K Saul, Sam T Roweis,Think Globally. Fit locally: unsupervised learning of low dimensional manifolds [ J ]. Journal of Machine Learning Research, 2003, 4 : 119-155.
  • 5Park J H, ZHANG Zhen-yue , ZHA Hong-yuan. Local linear smoothing for nonlinear manifold learning [ C ]//IEEE Computer Society Conference on CVPR. Washington, DC:[ s. n. ] ,2004,2:452-459.
  • 6Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation, 2003, 15(6) :1373-1396.
  • 7Chang H,Yeung D Y. Robust locally linear embedding[ J]. Pattern Recognition, 2006, 39(6) :1053-1065.
  • 8WANG Jing,ZHANG Zhen-yue. Nonlinear embedding preserving multiple local-linearities [J]. Pattern Recognition,2010, 43 (4) :1257-1268.
  • 9CHENG Lu-lu, WEI Hong, FERRYMAN J M. A survey of human motion analysis using depth imagery [ J ]. Pattern Recognition Let- ters,2013,34 ( 15 ) : 1995-2006.
  • 10AHAD M A R, TAN J K, KIM H, et al. Motion history image: its va- riants and applications[ J]. Machine Vision and Application,2012, 23(2) :255-281.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部