期刊文献+

稀疏性正则化的图像Laplace去噪及PR算子分裂算法 被引量:2

Sparsity regularized image Laplace denosing based on Peaceman Rachford operator splitting algorithm
下载PDF
导出
摘要 在Bayesian-MAP框架下,建立了针对Laplace噪声的稀疏性正则化图像去噪凸变分模型,模型采用L1范数作为数据保真项,非光滑的正则项约束图像在过完备字典下表示系数的稀疏性。进一步基于Peaceman-Rachford算子分裂算法,提出了数值求解该非光滑模型的多步迭代快速算法,通过引入保真项与稀疏性正则项的邻近算子,可将原问题转换为两个简单子问题的迭代求解,降低了计算复杂性。实验结果验证了模型与数值算法的有效性,本算法在摄像自动报靶系统中得到了应用。 Adopting Bayesian-MAP estimation framework,this paper proposed a sparsity regularized non-smooth convex functional model to denosie Laplace noisy image.The L1 norm was used for data fidelity term and non-smooth regularization term constrains the sparse representation of the underlying image over the overcomplete dictionary.Inspired form the Peaceman-Rachford operator splitting method,proposed a multi-step fast iterative algorithm to solve the non-smooth model above numerically.By introducing the proximal operators of fidelity term and regularization term,the original problem was transformed into solving two simple sub-problems iteratively,thus decreased the computational complexity rapidly.Experimental results demonstrate the effectiveness of our recovery model and numerical iteration algorithm.This algorithm has been applied to automatic target-reading system based on video processing.
出处 《计算机应用研究》 CSCD 北大核心 2011年第9期3542-3544,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA12Z142) 国家自然科学基金资助项目(61071146 60802039 60672074) 高等学校博士点专项基金资助项目(200802880018) 江苏省自然科学基金资助项目(SBK201022367)
关键词 稀疏表示 图像去噪 拉普拉斯噪声 PR算子分裂算法 sparse representation image denoising Laplace noise Peaceman-Rachford operator splitting
  • 相关文献

参考文献3

二级参考文献16

  • 1Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 2Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 3Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 4Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 5Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 6Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 7Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 8Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598
  • 9Mancera L, Portilla J. Lo-norm-based sparse representation through alternate projections. In: Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2006. 2089-2092
  • 10Bergeau F, Malt S. Match pursuit of images. In: Proceedings of the 1995 International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 53

共引文献42

同被引文献27

  • 1LEE Y J,JEONG S Y,KARBOWSKI M.Roles of the mammalian mi-tochondrial fission and fusion mediators Fis1,Drp1,and Opa1 inapoptosis[J].Molecular Biology of the Cell,2004,15(11):5001-5011.
  • 2LANG P,YEOW K,NICHOLS A,et al.Cellular imaging in drug dis-covery[J].Nature Reviews Drug Discovery,2006,5:343-356.
  • 3JONES T R,CARPENTER A E,LAMPRECHT M R,et al.Scoring di-verse cellular morphologies in image-based screens with iterative feed-back and machine learning[C]//Proc of National Academy of Sci-ences.[S.l.]:Stanford University’s Highwire Press,2009:1862-1831.
  • 4LOO L H,WU L F,ALTSCHULER S J.Image-based multivariate pro-filing of drug responses from single cells[J].Nature Methods,2007,4(5):445-453.
  • 5NANNI L,LUMINI A,LIN Y S,et al.Fusion of systems for automatedcell phenotype image classification[J].Expert Systems with Appli-cations,2010,37(2):1556-1562.
  • 6LIN Y S,LIN C C,TSAI Y S,et al.A spectral graph theoretic ap-proach to quantification and calibration of collective morphologicaldifferences in cell images[J].Bioinformatics,2010,26(12):29-37.
  • 7CHANG H H,MOURA J M F.Classification by Cheeger constant reg-ularization[C]//Proc of IEEE International Conference on ImageProcessing.USA:IEEE Press,2007:209-212.
  • 8BUADES A,COLL B,MOREL J.A non-local algorithm for image de-noising[J].IEEE Computer Society Conference on ComputerVision and Pattern Recognition,2005,2(6):60-65.
  • 9CRAMMER K,SINGER Y.On the algorithmic implementation of mul-ticlass kernel-based vector machines[J].Journal of MachineLearning Research,2001,2(3/1):265-292.
  • 10CHEBIRA A,BARBOTIN Y,JACKSON C,et al.A multiresolutionapproach to automated classification of protein subcellular location im-ages[J].BMC Bioinformatics,2007,8(1):210.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部