期刊文献+

A-Parseval框架小波的特征刻画

The Characterizations of A-Parseval Frame Wavelet
原文传递
导出
摘要 研究与伸缩矩阵A相关的Parseval框架小波(A-PFW)的特征刻画,其中伸缩矩阵A满足A^3=2I_3且A的每一列元素之和均为偶数.首先,讨论了与两个特殊伸缩矩阵B,C相关的Parseval框架小波(B-PFW,C-PFW)之间的关系,并得到C-PFW分别与两类特殊伸缩矩阵D,■相关的Parseval框架小波(D-PFW,■-PFW)之间的等价关系.其次,探讨了伪尺度函数和源于多分辨分析的A-PFW(MRA A-PFW)的特征刻画.最后,借助于维数函数,给出了A-PFW是MRA A-PFW的一个充要条件. In this paper, the characterization of Parseval frame wavelets with dilation matrix A (A-PFW)is studied, where A satisfies A^3 = 2I3 and the sums of the elements in each column are even number.Firstly, the relation of Parseval frame wavelets with special dilation matrix B (B-PFW) and Parseval frame wavelets with special dilation matrix C (C-PFW) is discussed, and at the same time the equivalence relations of C-PFW) and Parseval frame wavelets with two kinds of special dilation matrices D,D (D-PFW, /9-PFW) are gave. Secondly, the characterizations of pseudo-scaling function and MRA Parseval frame wavelets with dilation matrix A (MRA A-PFW) are presented.Finally, by means of dimensional function, a sufficient and necessary condition for an A-PFW to be an MRA A-PFW is obtained.
作者 黄永东 孙娜
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第5期767-790,共24页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10961001) 教育部科学技术研究重点项目(209152)
关键词 Parseval框架小波 MRA 小波 维数函数 Parseval frame wavelets MRA Parsecval flame wavelets dimensionalfunction
  • 相关文献

参考文献21

  • 1Duff:in R. J.,Schaffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72(2): 341-366.
  • 2Daubechies I., Grossman A., Meyer Y., Painless nonorthogonal expansion, J. Math. Phys., 1986, 27: 1271- 1283.
  • 3Henandez E., Weiss G., A First Course on Wavelet, Fla: CRC Press, 1996.
  • 4Daubechies I., Ten Lecture on Wavelets, Philadelphia: SIAM, 1992.
  • 5Christensen O., An Introduction to Frames and Riesz Bases, Boston: Birkhauser, 2003.
  • 6Benedetto J. J., Li S., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmonic Anal., 1998, 5(4): 389-427.
  • 7Chui C. K., He W., Stockler J., Compactly supported tight affine frames with integer dilation and maximum vanishing moments, Adv. Comput. Math., 2003, 18(2): 159-187.
  • 8Daubechies I., Han B., Ron A., Shen Z., Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmonic Anal., 2003, 14(1): 1-46.
  • 9Ron A., Shen Z., Affine system in L2(R^d) I: the analysis of the analysis operator, J. Func. Anal., 1997, 148(2): 408-447.
  • 10Ron A., Shen Z., Affine system in L2(R^d) II: dual system, J. Fourier Anal. Appl., 1997, 3(6): 617-637.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部