期刊文献+

[a,b]-因子存在性的范-型条件 被引量:1

A Fan-Fype Condition for the Existence of [a,b]-Factors
原文传递
导出
摘要 设G是一个图,a,b是整数且满足0≤a≤b.如果存在G的一个支撑子图F,使对任意的x∈V(G)有a≤d_F(x)≤b,则称F是G的一个[a,b]-因子.本文给出图中具有特定性质的[a,b]-因子的范-型条件.进一步指出这个结果是最好的. Let G be a graph, and let a,b be two integers with 0 ≤ a ≤ b. Then a spanning subgraph F of G is called an [a, b]-factor if a ≤ dF(x) ≤ b holds for each x ∈ V(G). In this paper, we obtain a Fan-type condition for the existence of [a,b]- factors with prescribed properties. Furthermore, it is shown that the result in this paper is sharp.
作者 周思中
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第5期803-810,共8页 Acta Mathematica Sinica:Chinese Series
基金 江苏省青蓝工程资助项目 江苏省高校自然科学基金资助项目(10KJB110003) 江苏科技大学优秀青年骨干教师支持计划(2008SL083J) 江苏科技大学自然科学基金(2010SL101J 2009SL154J)
关键词 范-型条件 -[a b]-因子 graph Fan-type condition [a, b]-factor
  • 相关文献

参考文献2

二级参考文献24

  • 1Woodall D R. The binding number of a graph and its Anderson number. Journal of Combinatorial Theory (B), 1973, 15: 225-255.
  • 2Bondy J A, Murty U S R. Graph Theory with Applications. Macmillan, London, 1976.
  • 3Liu Guizhen. (g, f)-factors and (g,f)-factorizations of graphs. Acta Mathematica Sinica, 1994, 37(2): 230-236.
  • 4Zhou Sizhong. Some sufficient conditions for graphs to have (g, f)-factors. Bulletin of the Australian Mathematical Society, 2007, 75: 447-452.
  • 5Zhou Sizhong, Xue Xiuqian. Complete-factors and (g, f)-covered graphs. Australasian Journal of Combinatorics, 2007, 37:265- 269.
  • 6Liu Guizhen. (g < f)-factors of graphs. Acta Mathematica Scientia, 1994, 14:285- 290.
  • 7Matsuda H. Fan-type results for the existence of [a, b]-factors. Discrete Mathematics, 2006, 306: 688-693.
  • 8Zhou Sizhong, Jiang Jiashang. Notes on the binding numbers for (a, b, k)-critical graphs. Bulletin of the Australian Mathematical Society, 2007, 76: 307-314.
  • 9Kano M. A sufficient condition for a graph to have [a, b]-factors. Graphs and Combinatorics, 1990, 6:245 -251.
  • 10Zhou Sizhong, Xu Yang. Neighborhoods of independent sets for (a, b, k)-critical graphs. Bulletin of the Australian Mathematical Society, 2008, 77(2): 277-283.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部