期刊文献+

带Markov状态转换的跳扩散方程的数值解 被引量:2

Numerical Solutions of Jump Diffusions with Markovian Switching
原文传递
导出
摘要 研究了一类带Markov状态转换的跳扩散方程的数值解的问题,为讨论这类方程精确解的数值计算问题,我们给出了一种基于Euler格式的方程解的跳适应算法,并在一定的条件下,证明了基于这种新的跳适应算法所得到的方程的数值解是收敛于它的精确解,同时还给出了数值解收敛到其精确解的收敛阶数.最后,本文通过两个例子说明了这种跳适应算法的计算有效性. Abstract We consider the numerical solutions for a class of jump diffusions with Markovian switching. After briefly reviewing necessary notions, a new jump-adapted efficient algorithm based on the Euler scheme is constructed for approximating the exact solution. Under some general conditions, it is proved that the numerical solution through such scheme converge to the exact solution. Moreover, the order of the error between the numerical solution and the exact solution is also derived. Numerical experiments are carried out to show the computational efficiency of the approximation.
作者 叶俊 李凯
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第5期823-838,共16页 Acta Mathematica Sinica:Chinese Series
关键词 跳扩散 Markov转换 数值解 jump diffusion Markovian switching numerical solutions
  • 相关文献

参考文献21

  • 1Gershwin S. B., Hierarchical flow control: a framework for scheduling and planning discrete events in manufacturing systems, Proc. IEEE, 1979, 77:195 209.
  • 2Labeau P. E., Smidts C., Swaminathan S., Dynamic reliability: towards an integrated platform for probabilistic risk assessment, Reliability Engineering and System Safety, 2000, 68:219 254.
  • 3Tomlin C., Pappas G., Sastry S., Conflict resolution for air traffic management: a case study in multi-agent hybrid systems, IEEE Tr. Automatic Control, 1998, 14:509 521.
  • 4Willsky A. S., Levy B. C., Stochastic stability research for complex power systems, DOE Contract, LIDS, MIT, Rep., ET-76-C-01-2295, 1979.
  • 5Buffington J., Elliott R. J., American options with regime switching, International Journal of Theoretical and Applied Finance, 2002, 5:497 514.
  • 6Yao D. D., Zhang Q., Zhou X. Y., A Regime-Switching Model for European Options, In: Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, (Yan H., Yin G., Zhang Q. ed.), New York: Springer, 2006, 281-300.
  • 7Arapostathis A., Ghosh M. K., Marcus S. I., Optimal control of switching diffusions with application to flexible manufacturing systems, SIAM J. Control Optim., 1993, 31:1183 1204.
  • 8Bruti-Liberati N., Platen E., Strong approximations of stochastic differential equations with jumps, J. Comput. Appl. Math., 2007, 205:982 1001.
  • 9Higham D. J., Kloeden P. E., Numerical methods for nonlinear stochastic differential equations with jumps, Numerische Mathematik, 2005, 101:101 119.
  • 10Kloeden P. E., Platen E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1992.

同被引文献9

  • 1Mao X,Yuan C.Stochastic Differential Equations with Markovian Switching[M].London.:Imperial College Press,2006.
  • 2Yuan C,Mao X.Convergence of the Euler-Maruyama method for stochastic differential equations with Markovian switching[J].Mathematics Computers Simulation,2004,64:223-235.
  • 3Mao X,Yuan C,Yin G.Numerical method for stationary distribution of stochastic differential equations with Markovian switching[J].J Comput Appl Math,2005,174:1-27.
  • 4Mao X.Stability of stochastic differential equations with Markovian switching[J].Stocha Process Appl,1999,79:45-67.
  • 5Higham D,Mao X,Yuan C.Preserving exponential meansquare stability in the simulation of hybrid SDEs[J].Numer Math,2007,108:295-325.
  • 6Ikeda N,Watanable S.Stochastic Differential Equations and diffusion processes[M].Amsterdam:North-Holl,1989.
  • 7Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations[J].Acta Math Acad Sci Hungar,1956,7:71-94.
  • 8毛伟.带有Levy跳和非局部Lipschitz系数的随机泛函微分方程解的存在唯一性[J].数学的实践与认识,2013,43(13):193-200. 被引量:2
  • 9毛伟.Levy噪声扰动的混合随机微分方程的Euler近似解[J].华中师范大学学报(自然科学版),2014,48(1):1-6. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部