期刊文献+

基于图像处理的车辆排队长度鲁棒检测算法 被引量:8

Robust Detection of Vehicle Queue Based on Image Processing
下载PDF
导出
摘要 针对实际应用中车道标志线和车辆阴影等无关信息严重影响排队长度检测精度的问题,提出了一种基于图像处理的车辆排队长度鲁棒检测算法;首先将背景差法和帧间差法相结合进行停车状态识别;在此基础上,综合利用梯度差分和颜色差分获取车辆完整信息,从而为采用伸缩窗进行排队长度检测提供了更加鲁棒的信息;实验结果表明算法检测准确,满足实时性的要求。 This paper proposes a novel robust detection algorithm of vehicle queue based on image processing. The paper firstly combines the two methods of background subtraction and frame differencing to recognize vehicle movement states. On this basis, the paper utilizes gradient differences and color differences for complete information of vehicles, which provides more robust information for using the flexible window method to detect queue length. Experimental results show that the algorithm satisfies real--time requirements and show good performance
出处 《计算机测量与控制》 CSCD 北大核心 2011年第8期1810-1813,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(60774037) 国家自然科学基金青年基金资助项目(60904069) 教育部博士点新教师基金(20091103120008)
关键词 图像处理 停车状态检测 排队长度检测 伸缩窗 image processing vehicle movement states vehicle queue flexible window
  • 相关文献

参考文献6

  • 1张继平,刘直芳.视频中运动目标的实时检测和跟踪[J].计算机测量与控制,2004,12(11):1036-1039. 被引量:8
  • 2贺晓锋,杨玉珍,陈阳舟.基于视频图像处理的车辆排队长度检测[J].交通与计算机,2006,24(5):43-46. 被引量:18
  • 3Zhe Liu, Yangzhou Chen, Zhenlong Li. Vehicle queue detection based on morphological edge [A]. Chongqing: Intelligent Control and Automation (WCICA' 08) [C]. 2008, 2732-2736.
  • 4W. W. L. Lain, C. C. C. Pang, and N. H. C. Yung. High- ly accurate texture based vehicle segmentation method [J]. Opt. Eng. SPIE, 2004, 43 (3): 591-603.
  • 5M. Y. Siyal, and M. Fathy. Real--time measurement of traffic queue parameters by using image processing techniques [A]. Edin- burgh: Proc. 5th IEE Int. Conf. Image Processing Applicat. (IPA95) [C]. 1995, 450-454.
  • 6Zehang Sun, George Bebis, Ronald Miller. Vehicle detection: a re view[J]. IEEE Transactions on pattern analysis and machine in telligence, 2006, 28 (5): 694-711.

二级参考文献14

  • 1Karamann K,Brandt A. Moving object recognition using an adaptive background memory [A].In Proc. Time-Varying Image Processing and Moving Object Recognition[C]. V. Cappellini, Ed., 1990:35-40.
  • 2Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [A]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition[C].Fort Collins, Colorado,1999:246-252.
  • 3Barron J.Performance of optical flow techniques [J].International Journal Computer Vision,1994,(12):42-77.
  • 4Surendra G. Detection and classification of vehicles [J]. IEEE Trans. On Intelligent Transportation Systems, 2002,(3): 37-47.
  • 5Rouke A,Bell M G H.Queue detection and congestion monitoring using image processing.Traffic Eng.Control,1991:412-421
  • 6Hoose N.Queue detection using computer image processing,Road Traffic Monitoring,1989:94-98
  • 7Hoose N.Computer image processing in traffic engineering.Research Studies Press,Taunton,1991:216-231
  • 8Fathy M,Siyal M Y.Real-time image processing approach to measure traffic queue parameters,IEE Proc.-Vis.,Image Signal Process.,1995:297-303
  • 9Siyal M Y,Fathy M.A neural-vision based approach to measure traffic queue parameters in realtime,Pattern Recognition Letters,1999,20(8):317-325
  • 10Siyal M Y,Fathy M.Real-time measurement of traffic queue parameters by using imageprocessing techniques,Image Processing and its Applications,1995:450-454

共引文献24

同被引文献62

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部