期刊文献+

基于机器视觉的高密度电路板缺陷检测系统 被引量:14

Defects Inspection System of HID PCB Based on Machine Vision
下载PDF
导出
摘要 为减少高密度电路板的缺陷误报率,研究一种新型自动光学检测系统(AOI);系统采用自行研制的多色LED照明系统,利用机器视觉获取被测PCB的图像,通过图像处理软件系统快速准确地识别出各种缺陷;系统利用获取的彩色图像信息,根据各种缺陷的特征信息不同,采用OPENCV对各种缺陷的检测算法进行改进,使得系统性能有很大改进;对30块同类HDI型PCB的36300个检测点进行测试,测试结果证明,系统PCB缺陷的检出率高达99.87%,误报率只有0.32%。 An improved automated optical inspection system (AOI) is researched to decrease defects false alarm rate of HDI PCB. With a new multicolor LED illuminator, the system can capture the tested PCB image by using machine vision, and identify the various defects quickly and accurately through image processing software systems in this paper. The performance system of this AOI has been greatly improved by using improved hardware system and algorithms which was programmed on OPENCV platform by using the colorful information of captured images. The 36300 testing points of 30 HDI PCB are detected, and the results of this experiment prove that the PCB defect detection rate of the AOI inspection system is improved to 99.87% and the false alarm rate of defects down to 0. 32%.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第8期1824-1826,共3页 Computer Measurement &Control
基金 北京市科委创新项目(K20090217L)
关键词 机器视觉 高密度电路板 多色LED照明 缺陷检测 OPENCV machine vision HDI PCB multicolor illuminator defects inspection OPENCV
  • 相关文献

参考文献8

  • 1Mukul, Shirvaikar. Trends in automated visual inspection [J]. Re- al-Time ImageProc2006, 8:41 -43.
  • 2D B. Perng, G Y. Peng, C J. Yan, C C. Chou. A new machine vi- sion system for SMD PCB auto--inspection[A]. The International Symposium on Measurement Technology & Intelligent Instrument ISMTII' 2001 [C]. Cairo, Egypt, 2001, 9: 25-29.
  • 3李双,王仲生.基于机器视觉的航空发动机转子裂纹故障识别系统[J].计算机测量与控制,2009,17(4):631-632. 被引量:7
  • 4Carsten Steger, Markus Ulrich, Christian Wiedemann. Machine Vi- sion Algorithms and Applications [M].清华大学出版社,2008,11,1-5.
  • 5Aeeiani G, Brunetti G, Fornarelli G, et al. AOI based neurofuzzy system to evaluate solder joint quality [A]. ICEIS 2009--llth In- ternational Conference on Enterprise Information Systems [C]. 2009: 50-53.
  • 6Chiu S N, Perng M H, Reflection--area--based feature descriptor for solder joint inspection[J]. Machine Vision and Applications, 2007, 18: 95.
  • 7M. Moganti, F. Ercal, Automatic PCB inspection Algorithms: A Survey [J]. Computer Vision and Image Understanding. 1996, 63 (2): 287-313.
  • 8Crispin A J, Rankov V. Automated inspection of PCB components using a genetic algorithm template--matching approach [J]. Inter- national Journal of Advanced Manufacturing Technology, 2007, 35 : 293 - 300.

二级参考文献6

  • 1Davies W G R et al.Analysis of a multi-shaft-bearing system containing a transverse crack in a rotor[J].ASME.journal of Vibration and Acousics,1984,106:139-145.
  • 2客观澳.计算机图像处理[M].北京:清华大学出版社,2000..
  • 3朱志刚 等译.数字图像处理[M].北京:电子工业出版社,1998..
  • 4章毓晋.图像分割[M].北京:科学出版社,2001..
  • 5贾云德.机器视觉[M].北京:科学出版社,2002.
  • 6陈元琰,姜颖军.基于计算机视觉的玻璃瓶裂纹在线检测系统[J].计算机应用,2001,21(11):48-49. 被引量:12

共引文献6

同被引文献99

引证文献14

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部