期刊文献+

基于肌电信号的行走步态周期识别方法与实验系统的设计 被引量:3

Design of Walking Gait Cycle Identification Method Based on Electromyogram and Experiment System
下载PDF
导出
摘要 通过下肢表面肌电信号的人体行走步态周期识别方法设计了实验系统;针对表面肌电信号的微弱性、交变性、低频性等特点,提出了识别肌肉动作起始时刻的峰—谷线性插值分段积分算法,并将该算法与阈值法相结合,提取足跟着地前肌肉动作起始时刻,从而达到划分步态周期的目的;该方法仅需单通道信号作为信息源,不同被测者可以选用不同的肌电信号;有效回避了肌电信号传感器零点漂移现象;文中分别对5位被测者行走时的7个下肢肌电信号进行采集,以VisualC++为工具,基于用户界面设计了步态周期的识别系统,其系统识别结果验证了该方法具有广泛性、可靠性、准确性和实用性。 An walking gait cycle identification system based on lower limb surface electromyogram is designed. Peak--valley linear inter-polation and piecewise integrator arithmetic, which can identify the starting action moment of muscle and aim at the faintness, alternating and low--frequency of the surface electromyogram, is presented. The starting action moment before heel--strike can be extracted through an appropriate threshold condition of the eigenvalues got by the arithmetic, so the gait cycle can he partitioned. Only one input signal source is re quired to be the information, and different surface electromyogram signals of lower limb could be gathered from different bodies. The signals analysised in this article are sampled from 7 surface electromyogram signals of 5 bodies when walking, the gait cycle identification system is designed through Visual C+ +6. 0 based on user interface. The results of the identification system show that the identification method is universal, reliable, accurate and practical.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第8期1965-1967,1971,共4页 Computer Measurement &Control
基金 国家科技支撑计划(2009BAI71B04) (2006BAI22B07)
关键词 表面肌电信号 步态周期 峰—谷线性插值分段积分算法 移动平均滤波 surface electromyogram, gait cycle, peak valley linear interpolation and piecewise integrator, moving average filtering
  • 相关文献

参考文献7

  • 1Nymark J R, Balmer S J, Melis E H, et al. Eleetromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds [J]. Journal of Rehabilitation Re- search and Development, 2005, 42: 523- 534.
  • 2Arnold A S, Schwartz M H, Thelen D G, et al. Contributions of muscles to terminal--swing knee motions vary with walking speed [J]. Journal of Biomechanics, 2007, 40:3660-3671.
  • 3Ricamato A L, Hidler J M. Quantification of the dynamic properties of EMG patterns during gait E J3. Journal of Electromyography and Kinesiology. 2005, 15: 384-392.
  • 4Liu M Q, Anderson F C, Schwartz M H, et al. Muscle contribu- tions to support and progression over a range of walking speeds [J]. Journal of Biomeehanics, 2008, 41:3243 - 3252.
  • 5R. R. Neptune, F. E. Zajac, S. A. Kautz. Muscle force redis- tributes segmental power for body progression during walking [J]. Gait and Posture, 2004, 19:194-205.
  • 6R. R. Neptune, K. Sasaki, S. A. Kautz. The effect of walking speed on muscle function and mechanical energetics [J]. Gait and Posture, 2008, 28: 135- 143.
  • 7何乐生,宋爱国.一种基于肌电信号的动作起始时刻识别方法[J].数据采集与处理,2006,21(3):266-271. 被引量:4

二级参考文献7

  • 1HaganM DemuthH BealeM.神经网络设计[M].北京:机械工业出版社,2002.227-257.
  • 2Merletti R, LoConte L. Modeling of surface myoelectric signals-Ⅰ[J]. IEEE Trans Biomedical Engineering, 1999,46(7): 810-820.
  • 3汤晓芙.神经系统临床电生理学、肌电图学及其他[M].北京:人民军医出版社,2002:1-55.
  • 4Fukuda (), Tsuji T. A human assisting manipulator teleoperated by EMG signals and armmotions [J].IEEE Trans Robot and Automation, 2003,19(2):210-222.
  • 5Kristin F, Walker D. Myoelectric teleoperation of a complex robotic hand [J]. IEEE Trans Robot and Automation, 1996, 12(5): 775-788.
  • 6Englehart K, Hudgins B. A wavelet-based continuous classification scheme for multifunction myoelectric control[J]. IEEE Tran Biomedical Engineering,2001, 48(3): 302-311.
  • 7Balestra G, Frassinelli S. Time frequency analysis of surface myoelectric signals during athletic movement[J]. IEEE Tran Medicine and Biology, 2001, 20(6): 106-115.

共引文献3

同被引文献37

  • 1王人成.我国假肢技术的研究与进展[J].中国康复医学杂志,2012,27(11):1058-1060. 被引量:17
  • 2Arjunan S P, Kumar D K, Naik G R. A machine learning based method for classification of fractal features of forearm S[MG using Twin Support Vector Machines [A]. 32nd Annual International Conference of the IEEE [MBS [C]. Buenos Aires, 2010:4821 -4824.
  • 3Khezri M, Jahed M. A Neuro-Fuzzy Inference System for s[MG -Based Identification of Hand Motion Commands [J]. IEEE Transactions on Industrial Electronics, 2011, 58 (05): 1952 - 1960.
  • 4Ryait H S, Arora A S, Agarwal R. Interpretations of Wrist/Grip Operations From S[MG Signals at Different Locations on Arm [J]. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4 (02): 101-111.
  • 5Levi J. Englehart H K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric Signal Classification [J]. IEEE Transac tions on Biomedical Engineering, 2007, 54 (05): 847 -853.
  • 6侯秀丽,宋爱国.基于小波变换与BP网络的四通道表面肌电信号模式识别[J].仪器仪表学报,2007,28(04):528-531.
  • 7Sup F,Bohara A,Goldfarb M.Design and control of a powered transfemoral prosthesis.[].International Journal of Robotics Research.2008
  • 8Vallery Heike,Burgkart Rainer,et al.Complementary limb motion estimation for the control of active knee prostheses[].Biomedicinische Technik.2011
  • 9Orendurff Michael S,Segal Ava D,et al.Gait efficiency using the C-Leg[].Journal of Rehabilitation.2006
  • 10Yang Peng,Chen Lingling,Xu Xiaoyun,et al.Surface electromyography signals processing based on support vector machine during Gait[].Dynamics of continuous discrete and impulsive systems-series b-applications&algorithms.2006

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部