期刊文献+

耦合系统考虑可靠性的多学科设计优化分解方法 被引量:1

Decomposition method for coupled system reliability-based multidisciplinary design optimization
下载PDF
导出
摘要 为了减少基于可靠性的多学科设计优化的计算成本,提出了一种面向耦合多学科设计优化的分解方法。定义了函数计算成本矩阵来处理可靠性函数的随机性,给出了根据函数随机特征计算函数计算成本矩阵的方法,同时定义了耦合关系矩阵来处理函数之间的耦合性,给出了识别耦合变量集的算法;基于函数计算成本矩阵和耦合关系矩阵提供的信息,改进了整体计算成本等评价指标的度量方法;利用遗传算法进行分解,寻求整体计算成本最小的分解方案;通过电子封装的多学科设计优化算例对上述方法进行了验证,通过与两个已有分解方案的对比表明,该方法能够显著减少整体计算成本。该方法与传统方法相比具有两个优势:一方面可以识别和分解耦合变量,使其能够用于耦合系统的分解;另一方面可以将可靠性函数平均分解到各子任务中,以获得更少的整体计算成本。 To reduce the computational cost of Reliability-based Multidisciplinary Design Optimization(RBMDO),a novel decomposition method oriented to coupled RBMDO was presented.Function Cost Table(FCT) was defined to tackle the randomness of reliability functions,and the computational method for FCT cost based on randamness characteristics of reliability functions was presented.Coupling Dependency Table(CDT) was also defined to cope with the coupling relationship between function,and an algorithm to identify and decompose the coupling variables was presented.Moreover,the measurement method for evaluation index of total computational cost was improved based on the information provided by FCT and CDT.Genetic algorithm was applied to obtain the minimal total computational cost decomposition solution.This method was verified by an electronic packaging RBMDO problem.Compared to two existing decomposition solutions,this method significantly reduced the total computational cost.Compared to traditional approach,this method had two advantages: on one hand,the coupled variables could be identified and decomposed so that it could be used for the coupled system decomposition;on the other hand,reliability functions were decomposed into average various sub-tasks to obtain less cost of the overall computation.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2011年第8期1743-1748,共6页 Computer Integrated Manufacturing Systems
基金 国家973计划资助项目(61382)~~
关键词 分解 耦合系统 可靠性 多学科设计优化 不确定性 电子封装 decomposition coupled system reliability multidisciplinary design optimization uncertainty electronic packaging
  • 相关文献

参考文献9

  • 1SUES R H, CESARE M A. An innovative framework for reli-ability-based MDO[EB/OL]. [2011-07-02]. http://aircraftde- sign. nuaa. edu. cn/MDO/ref/Uncertainty/Reliability-based%20design/An%20innovative%20framework%20for%20reliability-based%20MDO. pdf.
  • 2PADMANABHAN D, BATILL S M. Decomposition strategi- es for reliability based optimization in multidiseiplinary system design[C]//Proceedings of the 9th AIAA/USAF/NASA/ISS- MO Symposium on Multidisciplinary Analysis and Optimiza- tion. AIAA 2002-5471.
  • 3范辉,李为吉.An Efficient Method for Reliability-based Multidisciplinary Design Optimization[J].Chinese Journal of Aeronautics,2008,21(4):335-340. 被引量:12
  • 4KUSIAK A, CHOW W S. Efficient solving of the group tech- nology problem[J]. Journal of Manufacture Systems, 1987,6 (2) :117-124.
  • 5KRISHNAMACHARI R S, PAPALAMBROS P Y. Optimal hierarchical decomposition synthesis using integer program- ming[J]. ASME Journal of Mechanic Design, 1997,119 (4) : 440-447.
  • 6ALTUS S S, KROO I M, GAGE P J. A genetic algorithm for scheduling and decomposition of multidisciplinary design prob- lems[J]. Journal of Mechanical Design, 1996, 118 (4): 486-489.
  • 7GUO Jianbin, ZENG Shengkui, JIANG Tongmin,et al. Mod- el-based decomposition synthesis using integer programming for non-deterministic MDO [C]//Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Va. , USA:AIAA,2008.
  • 8郭健彬,曾声奎,陈云霞,高洁萍.考虑不确定性的多学科设计优化分解方法[J].计算机集成制造系统,2009,15(1):6-11. 被引量:3
  • 9SRINIVAS K. Evaluation of methods for multidiseiplinary design optimization(MDO) phase Ⅰ[R]. NASA/CR1998-208716.

二级参考文献12

  • 1王燕萍,吕震宙,岳珠峰.隐式极限状态方程可靠性研究[J].应用数学和力学,2005,26(9):1055-1060. 被引量:3
  • 2GU Xiaoyu, RENAUD J E, BATILL S M. An investigation of multidisciplinary design subject to uncertainty[C]//Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Va. , USA: AIAA, 1998:AIAA-1998-4747.
  • 3KUSIAK A, CHENG C. A branch-and-bound algorithm for solving the group technology problems[J]. Annals of Operational Research, 1990, 26(1/4) :415 -431.
  • 4KROO I, ALTUS S, BRAUN R, et al. Multidisciplinary optimization methods for aircraft preliminary design[R]. Washington, D. C. , USA:NASA Langley Technical Report Server, 1994.
  • 5MICHELENA N F, PAPALAMBROS P Y. A network reliability approach to optimal decomposition of design problems [J]. ASME Journal of Mechanical Design, 1995, 117(3) :433- 440.
  • 6MICHELENA N F, PAPALAMBROS P Y. A Hypergraph framework for optimal model-based decomposition of design problems[J]. Computational Optimization and Applications, 1997, 8(2):173-196.
  • 7KRISHNAMACHARI R S, PAPALAMBROS P Y. Optimal hierarchical decomposition synthesis using integer programming[J]. ASME Journal of Mechanical Design, 1997, 119 (4), 440-447.
  • 8XIE S, MILTHORPE J, SMITH W F, et al. Contribution-based decomposition method for muhidisciplinary engineering optimization[C]//Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Va. , USA:AIAA Press,2004.
  • 9CHEN L, DING Z, LI S. Tree-based dependency analysis in decomposition and re decomposition of complex design problems[J]. Journal of Mechanical Design, 2005,127(1) : 12-23.
  • 10SOBIESKI S. On the sensitivity of complex, internally coupled systems[J]. AIAA Journal, 1990, 28(1) : 153-160.

共引文献13

同被引文献17

  • 1BEN-HAIM Y, ELISHAKOFF I. Convex models of uncer- tainty in applied mechanics[M]. Amsterdam, the Nethlands: Elsevier Science, 1990.
  • 2BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structral Safety, 1994,14(4) : 227-245.
  • 3ELISHAKOFF I. Essay on uncertainties in elastic and viscoe- lastic structures: from a m freudenthal's criticisms to modern convex modeling[J]. Computers & Structures, 1995,56 (6) : 871-895.
  • 4GU Xiaoyu, RENAUD J E, BA TILL S M. An investigation of multidisciplinary design subject to uncertainty [C]//Pro- ceedings of the 7th AIAA/ USAF/ NASA/ ISSMO Symposi- um on Multidisciplinary Analysis and Optimization. Reston, Va. ,USA:AIAA, 1998:AIAA2199824747.
  • 5DU X, CHEN W. Sequential optimization and reliability as- sessment method for efficient probabilistic design[C]//Pro- ceedings of ASME 2002 Design Engineering Technical Confer- ence and Computers and Information in Engineering Confer- ence. New York, N. Y. , USA:ASME,2002.
  • 6GU X, RENAUD J E. Implicit uncertainty propagation for robust collaborative optimization [C]//Proceedings of DE- TC01 ASME 2001 Design Engineering Technical Conferences and Computers and Imformation in Engineering Conference. New York, N. Y. ,USA:ASME,2001.
  • 7STEWARD D V. Systems analysis and management:struc- ture, strategy, and design[M]. New York,N. Y. ,USA:Pet- rocelli Books, 1981.
  • 8KUSIAK A, ZHU J, WANG J. Algorithm for simplification of the design process[C]//Proceedings of the 1993 NSF De- sign and Manufacturing Systems Conference, Society of Man- ufacturing Engineers. Dearborn, Mi., USA:National Science Foundation, 1993 : 1107-1111.
  • 9ROGERS J L, MCCULLEY C M, BLOEBAUM C L. In- tegrating a genetic algorithm into a knowledge-based system for ordering complex design processes[M]. Berlin, Germa- ny: Artificial Intelligence in Design 96,1996.
  • 10ALTUS S S, KROO I M, GAGE P J. A geneticalgorithm for scheduling and decomposition of multidisciplinary design problems[J]. ASME Journal of Mechanical Design, 1996,118 (4) :486-489.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部