期刊文献+

基于数据挖掘的网上证券交易异常行为分析 被引量:1

An Analysis based on Data Mining of Abnormal Behavior in Online Securities Trading
下载PDF
导出
摘要 将数据挖掘技术引入了证券交易异常行为的分析过程,通过对异常交易行为建模,最终给出了基于孤立点挖掘算法的异常行为分析方法。 This paper brings in data mining for analyzing abnormal situation in dealing securities,combines modeling and Insolated Points algorithm to protect abnormal behavior.
作者 朱红 陈星霖
出处 《计算机安全》 2011年第8期20-24,共5页 Network & Computer Security
基金 科技部支撑计划(2009BAH47B03)
关键词 证券交易 异常行为 数据挖掘 孤立点挖掘算法 Dealing in securities abnormal behavior data mining Insolated Points algorithm
  • 相关文献

参考文献4

  • 1Fayyad U, Piatetsky-Shapiro, Smyth, Uthurusamy. T996. Advances in Knowledge Discovery and Data Mining. MIT Press.
  • 2Srikant R, Agrawal R Generalizations and performance Mining sequential patterns mprovements[c] Proc, of the 5th Internstional Conference on Extending Database Technology Avignon, 1996.
  • 3Pei J, Han d. Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth[c] Proc of the 7th International Conference on Data Engineering. Washington Dc: IEEE Computer Society, 2001:215-224.
  • 4KNORR EM, NG RT. Algorithms for Mining Distance-Based OutLiers in Large Datasets[J]. Proceedings of the 24th VLD9 Conference[C]. 1998 : 392-403.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部