期刊文献+

机器人救援的目标吸引动态路径规划蚁群算法 被引量:2

Target Attraction Based Ant Colony for Dynamic Path Planning of Rescue Robot
下载PDF
导出
摘要 地震发生后城市的道路状况未知而且复杂多变,因此,在震后机器人救援中,如何快速地找到最短路径以拯救更多的伤员,成为研究的热点问题。提出一种目标吸引的动态路径规划蚁群算法,在动态变化的震后救援环境中找到最短路径,减少救援时间。利用原有城市交通地图的全局信息建立目标吸引函数,对蚂蚁在复杂动态环境下的路径搜索进行引导,提高其选择离目标点更近邻节点的概率,减小蚂蚁对非最短路径的选择概率。通过与MMAS算法进行仿真实验对比,验证了提出的算法可以更快地收敛到最短路径并具有较好的动态性能。 The road condition of city is unknown,complex and changing,so in post earthquake robot rescue,how to find the shortest path quickly to save more wounded persons becomes a hot issue.A target attraction based ant colony for dynamic path planning was proposed to find the shortest path in the post earthquake environment to reduce the rescue time.And the global information of city traffic map was adopted to establish target attraction function,which guided the ants for path searching in the complex dynamic environment,to improve the probability of selecting the closer path to the target point,and reduce the probability of selecting the non-shortest path.Comparing with MMAS algorithm through simulation,the proposed TAAC algorithm was verified to have a good dynamic performance and could converge to the shortest path quickly.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第9期1854-1859,共6页 Journal of System Simulation
基金 国家自然科学基金(60874042) 国家高技术研究发展计划(863计划)(2008AA04Z128)
关键词 目标吸引函数 蚁群算法 动态路径规划 机器人救援 target attraction function ant colony optimization dynamic path planning robot rescue
  • 相关文献

参考文献14

  • 1Kitano H, Tadokoro S, Noda H. RoboCup Rescue: Search and Rescue for Large Scale Disasters as a Domain for Multi-Agent Research [C]// Proceedings of the International Symposium on Systems, Man, and Cybernetics. USA: IEEE Press, 1999: 739-743.
  • 2Undeger C, Polat F. Real-Time Edge Follow: a Real-Time Path Search Approach [J]. IEEE Transaction on Systems, Man, and Cybernetics (S1094-6977), 2007, 37(5): 860-872.
  • 3Dorigo M, Gambardella L M. Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 1997, 1(1): 53-66.
  • 4Stiitzle T, Hoos H H. Max-Min Ant System [J]. Future Generation Computer Systems (S0167-739X), 2000, 16(8): 889-914.
  • 5Bullnheimer B, Hartl R F, Strauss C. A New Rank Based Version of the Ant System: a Computational Study [J]. Central European Journal for Operations Research and Economics (S 1435-246X), 1999, 7(1): 25-38.
  • 6Zecchin A C, Simpson A R, Maier H R, et al. Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization [J]. 1EEE Transactions on Evolutionary Computation (S1089-778X), 2005, 9(2): 179-191.
  • 7Li Y H, Dong T, Bikdash M, et al. Path Planning for Unmanned Vehicles Using Ant Colony Optimization on a Dynamic Voronoi Diagram [C]// Proceedings of the 2005 International Conference on Artificial Intelligence. USA: CSREA Press, 2005: 716-721.
  • 8Sallimt J. Abdullah R, Khader A T. Ant Colony Optimization for Optimal Path Finding in Protein Interaction Network [C]// International Conference on Distributed Framework and Applications. USA: IEEE Press, 2008: 41-44.
  • 9Liu J Y, Fang Y J. Ant Colony System Algorithm for Path Routing of Urban Traffic Vehicles [C]// Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, 2007. USA: IEEE, 2007: 1902-1907.
  • 10Bedi P, Mediratta N, Dhand S. Avoiding Traffic Jam Using Ant Colony Optimization - a Novel Approach [C]// International Conference on Computational Intelligence and Multimedia Applications. USA: IEEE Press, 2007: 61-67,.

二级参考文献14

共引文献17

同被引文献12

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部