期刊文献+

一种新的求解复杂多目标优化问题的进化算法 被引量:3

New Evolutionary Algorithm for Complicated Multiobjective Optimization
下载PDF
导出
摘要 复杂多目标优化问题通常有大量的Pareto有效解,并且存在部分Pareto有效解容易求出,而部分Pareto有效解很难得到的情况。已有的多目标进化算法在设计进化算子时都没有考虑Pareto有效解的求解难易程度,都是使用固定的杂交变异概率,因而在求解复杂多目标优化问题时效率不高。用带权重的极大、极小策略,通过专门设计的权重得到一组适应值函数,同时进一步构造了随进化代数变化的杂交、变异概率,其大小根据求解有效解的难易程度自动调节,提出的多目标进化算法的效率大大提高,并能求出有效界面上相对均匀分布的有效解。数值仿真表明了本算法非常有效。 There are usually a lot of Pareto optimal solutions in a complicated multiobjective optimization,and some parts of them are easily to get,but others are not.At present,existing multiobjective evolutionary algorithms neglect the level of difficulty in solving Pareto optimal solutions,and they make use of fixed crossover and mutation probability in all parts,which is not efficient.Using a weighted min-max strategy,a group of fitness functions with the specially designed weight were obtained,and changing crossover and mutation probability following along with evolutionary generation were constructed.The crossover and mutation probability can be automatically regulated according to the level of difficulty in solving Pareto optimal solutions for a problem.Thus the proposed algorithm can enhance performance of algorithm and obtain evenly distributed Pareto optimal solutions.The numerical simulations show the proposed algorithm is very efficient.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第9期1860-1865,1899,共7页 Journal of System Simulation
基金 国家自然科学基金(60974077) 广东省自然科学基金(10251009001000002)
关键词 多目标优化 进化算法 杂交和变异算子 极大极小策略 multiobjective optimization evolutionary algorithm crossover and mutation operator max-min strategy
  • 相关文献

参考文献11

  • 1K Deb. Multi-objective optimization using evolutionary algorithms [M]. New York, USA: Wiley, 2001.
  • 2C A C Coello, D A V Veldhuizen, G B Lamont. Evolutionary algorithms for solving multi-objective problems [M]. Norwell, MA, USA: Kluwer, 2002.
  • 3Hailin Liu, Yuping Wang. A novel multiobjeefive evolutionary algorithm based on rain-max strategy [J]. Intelligent data engineering and automated learning. Science (S0302-9743), 2003, 2690(3): 361-368.
  • 4Hai-lin Liu, Yuping Wang, Yiu-ming Cheung. A multi-objective evolutionary algorithm using min-max strategy and sphere coordinate transformation [J]. Intelligent Automation and Soft Computing. Science (S1079-8587), 2009, 15(3): 361-384.
  • 5Q Zhang, H Li. MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition [J]. IEEE Trans. on Evolutionary Computation. Science (S 1089-778X), 2007, 11 (6): 712-731.
  • 6H Li, Q Zhang. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II, IEEE Trans. on Evolutionary Computation. Science (S1089-778X), 2009, 13(2): 284-302.
  • 7Leung Y W, Wang Y P. Multiobjective programming using uniform design and genetic algorithm [J]. IEEE Transactions on Syst. Man, Cybern. C. Science (S1094-6977), 2000, 30(3): 293-304.
  • 8H Ishibuchi, T Murata. Multi-objective genetic local search algorithm and its application to flowshop scheduling [J]. IEEE Transactions on Syst., Man, Cybern. Science (S1094-6977), 1998, 28(3): 392-403.
  • 9K Deb, A Pratap, S Agarwal, T Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation. Science (S1089-778X), 2002, 6(2): 182-197.
  • 10Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Transactions on Evolutionary Computation. Science (S1089-778X), 1999, 3(4): 257-271.

同被引文献20

  • 1刘建昌,赵阳杰,李飞,宋悦熙.基于R2指标的昂贵多目标进化算法[J].控制与决策,2020,35(4):823-832. 被引量:11
  • 2李金屏,何苗,杨波.遗传算法平均截止代数和成功率与种群规模之间的关系[J].系统仿真学报,2001,13(z1):206-210. 被引量:10
  • 3韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31. 被引量:466
  • 4Kalyanmoy Deb, Amrit P, Sameer Agarwal 等.A Fast and ElitistMultiobjective Genetic Algorithm: NSGA - II [ J]. IEEE Transac-tions On Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 5K. Deb, Multiobjective Optimization Using Evolutionary Algorithms.Chichester, U.K. : Wiley, 2001.
  • 6Zhiqiang Gao. Scaling and Bandwidth Parameterization Based Con-troller Tuning [ J ]. American Control Conference,2003 :4989 -4996.
  • 7T. Ray, K. Tai, and C. Seow, “An evolutionary algorithm for multi-objective optimization,” Eng. Optim.,2001,33(3) :399-424.
  • 8Dehui Sun, Yuntao Shi, Zhijun Li,et al. Research on Multi - Ob-jective optimal tuning of Auto Disturbance Rejection controller, Pro-ceedings of the IEEE international Conference on Automation andLogistics ,2007:1437 -1441.
  • 9Qiang Ma and Daping Xu Yuntao Shi. Research of Synthesis Tun-ing Algorithm of Active Disturbance Rejection Controller, Proceed-ing of the 7 th World Congress on Intelligent Control and Automa-tion,2008 :2788 -2793.
  • 10魏应三,王永生.船舶航速优化原理研究[J].中国造船,2008,49(B10):75-82. 被引量:22

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部