期刊文献+

基于NSGA-Ⅱ的IPMC机器鱼动态多目标相容优化控制 被引量:3

Dynamic Multi-objective Compatible Control of IPMC Propelled Robotic Fish Based on NSGA-Ⅱ
下载PDF
导出
摘要 实际控制问题中往往有多个控制目标需要兼顾,且多个目标通常情况下是冲突的。根据相邻控制步之间系统状态和控制输入的连续性,提出了一个基于NSGA-II的动态迭代多目标相容优化控制算法,并且这一算法有能力处理目标空间为非凸的控制问题和提高在线优化速度。考虑到IPMC驱动机器鱼在运行过程中能耗和速度两个关键且冲突的目标,建立IMPC驱动机器鱼的运动及能耗模型,将所提算法进行了应用。仿真结果表明了控制算法的有效性及其在慢复杂系统动态控制中的应用潜力。 It is popular that there exists multiple objectives in practical control system,and these objectives are usually competitive.Based on the tight relation between the system states of the neighboring sampling instants,a dynamic iterative multi-objective control algorithm based on NSGA-II was proposed,which could cope with nonconvex control problem as well as improve the computing speed.Considering the two key and conflicting objectives-speed and energy consumption,the robotic fish velocityand engery consumption model was established and the proposed algorithm was successfully applied.The simulation result shows the validity of the algorithm and its application potential for the multi-objective evolutionary algorithm to the slow complex varying system online control.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第9期1925-1931,共7页 Journal of System Simulation
基金 上海市自然科学基金(11ZR1415600) 国家自然科学基金(60674070) 上海海洋大学博士启动基金(A-2400-09-0150) 上海市高校选拔培养优秀青年教师科研专项基金(ssc09011)
关键词 多目标控制 迭代遗传算法 NSGA-Ⅱ IPMC机器鱼 multi-objective control iterative genetic algorithm NSGA-II IPMC robotic fish
  • 相关文献

参考文献9

  • 1Xu L, Zou Z, Hu Q. Two-Layer Optimization Compatible Control for Multi-Objective Control Systems [C]// Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, 2006, Ft. Lauderdale, FL, USA. USA: IEEE, 2006: 658-663.
  • 2魏环,高峰,王东凯,闻光辉,潘立登.简化稳定广义预测控制算法[J].系统仿真学报,2007,19(12):2757-2760. 被引量:2
  • 3Magnia S R, Tanelli M. Switched Model Predictive Control for Performance Enhancement [J]. International Journal of Control (S1366-5820), 2008, 81(12): 1-11.
  • 4Vito D, Scattolini R. A Receding Horizon Approach to the Multiobjective Control Problem [C]// Proceedings of the IEEE 46th Control and Decision Conference, USA: IEEE, 2007: 6029-6034.
  • 5Deb K, Agrawal S, Pratap A, et al. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(2): 182.
  • 6马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 7肖本贤,朱志国,刘一福.基于粒子群算法混合优化的广义预测控制器研究[J].系统仿真学报,2007,19(4):820-824. 被引量:21
  • 8Morgansen K A, Triplett B I, Klein D J. Geometric Methods for Modeling and Control of Free-swimming Fin-actuated Underwater Vehicles [J]. IEEE Transactions on Robotics (S1552-3098), 2007, 23(6): 1184-1199.
  • 9Chen Z, Tan X. A Control-oriented, Physics-based Model for Ionic Polymer-metal Composite Actuators [C]// Proceedings of the IEEE 46th Control and Decision Control Conference, USA: IEEE, 2007: 590-595.

二级参考文献54

  • 1马清亮,胡昌华.基于多目标进化算法的混合H_2/H_∞优化控制[J].控制与决策,2004,19(6):699-701. 被引量:4
  • 2李国勇.输入受限的隐式广义预测控制算法的仿真研究[J].系统仿真学报,2004,16(7):1533-1535. 被引量:12
  • 3Tan K C,Khor E F,Lee T H.Multiobjective Evolutionary Algorithms and Applications[M].London:Springer,2005.
  • 4Schaffer J D.Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms[D].Nashville:Vanderbilt University,1984.
  • 5Kollat J B,Reed P M.The Value of Online Adaptive Search:A Performance Comparsion of NSGAⅡ,ε-NSGAⅡand εMOEA[A].Proc of the 3rd Int Conf on Evolutionary Multi-criterion Optimization[C].Mexico,2005:386-398.
  • 6Gunawan S,Farhang-Mehr A,Azarm S.Multi-level Multi-objective genetic Algorithm Using Entropy to Preserve Diversity[A].Proc of the 2nd Int Conf on Evolutionary Multi-criterion Optimization[C].Faro,2003:148-161.
  • 7Blumel A L,Hughes E J,White B A.Multi-objective Evolutionary Design of Fuzzy Autopilot Controller[A].Proc of the 1st Int Conf on Evolutionary Multi-criterion Optimization[C].Zurich,2001:668-680.
  • 8Low K S,Wong T S.Optimization of a Hard Drive Servo System Using Multiobjective Genetic Algorithm[A].Proc of the 2004 IEEE Conf on Cybernetics and Intelligent Systems[C].Singapore,2004:705-710.
  • 9Ishibuchi H,Yoshida T,Murata T.Balance Between Evolutionary Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling[J].IEEE Trans on Evolutionary Computation,2003,7(2):204-223.
  • 10Dale B M.Optimal Design of MR Image Acquisition Techniques[D].Cleveland:Case Western Reserve University,2004.

共引文献42

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部