期刊文献+

基于证据理论的振动发散故障监测方法 被引量:3

Monitoring Method of Vibration Divergence Fault Based on Evidence Theory
下载PDF
导出
摘要 针对振动系统中振动迅速发散的故障,设计了基于证据理论的融合监测方法。对用于测量振动信号的多源传感器分别采用传感器数据方差、方差前向差分作商和方差前向作商作为描述状态的特征参数,计算基本概率分配函数,并根据Dempster组合规则进行融合。在隔振系统物理实验平台上实现了融合诊断监测过程,对采用3种特征参数的故障监测效果加以验证、比较和分析。实验结果表明,振动系统中传感器数据方差前向作商适合作为特征参数,由此构建的融合方法能够对振动发散故障实施有效诊断,并可以实现实时监测。 A fault fusion monitoring method based on evidence theory is designed for the vibration divergence fault in vibration systems.Multisensors are used to mesure the vibration signals.The variance of the multisource datas,quotient of forward difference of the variances and forward quotient of the variances are chosen as the state characteristic parameters respectively,then basic probability assignment functions are calculated.They are fused according to the dempster combination rule.The fusion diagnosing and monitoring process is realized on the hardware experiment platform of the vibration isolator.Monitoring effects using each state characteristic parameter are validated,compared and analyeed.The results show that forward quotient of variance is suitable for the state characteristic parameter.The fusion method based on this can diagnosis the vibration divergence fault effectively and achieve real-time monitoring.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2011年第4期424-428,532,共5页 Journal of Vibration,Measurement & Diagnosis
基金 中国科学技术大学研究生教育创新计划资助项目
关键词 振动发散故障 故障监测 证据理论 隔振器 信息融合 vibration divergence fault fault monitoring evidence theory vibration isolator information fusion
  • 相关文献

参考文献9

  • 1Liggins M E, Hall D L, Llinas J. Handbook of multisensor data fusion: theory and practice[M]. 2nd ed. Boca Raton,USA:CRC Press, 2008.
  • 2朱大奇,刘永安.故障诊断的信息融合方法[J].控制与决策,2007,22(12):1321-1328. 被引量:77
  • 3Basir O, Yuan X. Engine fault diagnosis based on multi-sensor information fusion using dempster-shafer evidence theory[J]. Information Fusion, 2007, 8(4): 379-386.
  • 4Fan X, Zuo M J. Fault diagnosis of machines based on D-S evidence theory. Part 1: D-S evidence theory and its improvement[J]. Pattern Recognition Letters, 2006, 27(5):366-376.
  • 5Fan X, Zuo M J. Fault diagnosis of machines based on D-S evidence theory. Part 2:Application of the improved D-S evidence theory in gearbox fault diagnosis [J]. Pattern Recognition Letters, 2006, 27 (5): 377-385.
  • 6Yang B S, Kim K J. Application of dempster-shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20(2): 403-420.
  • 7王明芳,汪梅,谭骏珊.D-S证据理论在便携式室内环保监控仪中的应用[J].振动.测试与诊断,2008,28(1):58-61. 被引量:3
  • 8Sharer G. A mathematical theory of evidence[M]. Princeton, USA: Princeton University Press, 1976.
  • 9梁青,段小帅,倪向贵,孟令雷,王永.磁悬浮隔振器动态电磁力实验与建模[J].实验力学,2009,24(3):228-232. 被引量:7

二级参考文献34

共引文献84

同被引文献19

  • 1Chao Chuntang, Teng Chingcheng. A fuzzy neural n-etwork based extended Kalman filter[J]. International Journal of Systems Science, 1996,27:333-339.
  • 2Zhou Zhijie, Hu Changhua, Chen Maoyin, et al. An improved fuzzy Kalman filter for state estimation of non-linear systems [J]. International Journal of Systems Science, 2010,41 (5) : 537-546.
  • 3Bouzid M, Champenois G, Bellaaj N M, et al. An effective neural approach for the auctomatic location of stator interturn faults in induction motor[J]. IEEE Transactions on Industrial Electronics, 2008, 55 (12) : 4277-4289.
  • 4Yang Jianbo. Rule and utility based evidential reason- ing approach for multi-attribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001,131(1):31-61.
  • 5Yang Jianbo, Liu Jun, Wang Jin, et al. Belief rulebase inference methodology using the evidential rea- soning approaeh RIMER[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2006,36(2) :266-285.
  • 6Taroun A, Yang Jianbo. Dempster-shafer theory of evidence., potential usage for decision making and risk analysis in construction project management[J]. Journal of the Built and Human Environment Review 4, 2011(1) : 155-166.
  • 7Mechefske C K. Objective machinery fault diagnosis using fuzzy logic[J]. Mechanical Systems and Signal Processing, 1998,12(6) :855-862.
  • 8Sun R. Robust reasoning: integrating rule-based and similarity-based reasoning[J]. Artificial Intelligence, 1995, 75(2) :241-295.
  • 9Zhou Zhijie, Hu Changhua, Yang Jinbo, et al. Online updating belief-rule-based system using the RIMER approach[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans,2011, 41(6) : 1225-1243.
  • 10Yang Jinbo, Xu Dongling. On the evidential reasoning algorithm for multiattribute decision analysis under un-certainty[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2002,32(3) :289-304.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部