摘要
通过对系统数学模型的分析,将系统参数辨识问题转化为优化问题,然后利用改进粒子群优化算法实现系统参数辨识。提出的混沌变异粒子群(CMPSO)搜索算法提高了搜索效率并增强了摆脱陷入局部最优的能力。
Through analyzing parameters identification algorithm,the parameters identification was changed into an optimization matter to identify the system parameters with improved PSO;and the proposed CMPSO can improve the optimizing of efficiency and avoid the convergence in local optimal points.The simulation results prove its validity.
出处
《化工自动化及仪表》
CAS
北大核心
2011年第7期782-784,共3页
Control and Instruments in Chemical Industry
关键词
粒子群优化算法
混沌变异粒子群
寻优
精英粒子
particle swarm optimization(PSO)
chaotic mutation particle swarm optimization(CMPSO)
optimizing
elite particle