期刊文献+

逆半群上S-系的内射壳

Injective hulls of S-systems over an inverse semigroup
下载PDF
导出
摘要 认为S的每个元素都诱导了S-系上的一个一元运算,因此S-系是有限代数,泛代数中的所有概念都是适用的.定义了S-系的可半格化子集和S-系的子集的面,构建了逆半群上的S-系的内射壳.推广了有关文献中的结果. Think of each element of S as inducing a unary operation on a S-system, then the S-system is a finitary algebra and all the notions of universal algebra are available. We define the semilatticible subset of a S-system and the face of a subset of a S-system, the injective hulls of S-systems over an inverse semigroup are constructed, The result of concerned literatures is generalized.
作者 李刚 刘楠
出处 《纯粹数学与应用数学》 CSCD 2011年第4期427-432,共6页 Pure and Applied Mathematics
基金 山东省中青年科学家科研奖励基金(2007BS01018)
关键词 S-系 逆半群 内射壳 S-systems, inverse semigroups, injective hulls
  • 相关文献

参考文献7

  • 1Berthiaume P. The injective envelope of S-sets[J]. Canad. Math. Bull., 1967,10:261-273.
  • 2Clifford A H, Preston G B. The Algebraic Theory of Semigroups[M]. Providence: Amer. Math. Soc. Press, 1961.
  • 3Howie J M. An Introduction to Semigroup Theory[M]. Oxford: Academic Press, 1976.
  • 4Johnson C S Jr, McMorris F R. Injective hulls of certain S-systems over a semilattice[J]. Proc. Amer. Math. Soc., 1972,32:371-375.
  • 5Jul Pil Kim, Young Soo Park. Injective hulls of S-systems over a clifford semigroup[J]. Semigroup Forum, 1991,43:19-24.
  • 6Lambek J. Lectures on Rings and Modules[M]. Oxford: Blaisdell Press, 1966.
  • 7Weinert H J. S-sets and semigroups of quotients[J]. Semigroup Forum, 1980,19:1-78.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部