摘要
设G是一个简单图,G1■G,G1在G中的度定义为d(G1)=∑v∈V(G)d(v),其中d(v)为v在G中的度数.主要结果是:设G是n≥3阶几乎无桥的简单连通图,且G=K(1,n-1)、Q1和Q2,若对G中任何同构于四个顶点路的导出子图Ⅰ,有d(Ⅰ)≥2n-6,则G有一个D-闭迹,从而G的线图L(G)是哈密顿图.
Let G be a simple graph, for G1 C G, let d(G1)=∑v∈V(G)d(v), where d(v) is degree of the vertices v. The main result is as Follows: Let G be a simple connected, almost brideless graph of order n 〉 3, G ≠ K1,n-1, Q1 and Q2,if dd(I)≥2n-6 for each induced subgraph I isomorphic to 4 vertex road, then line graph L(G) of G has Hamiltonian cycles.
出处
《纯粹数学与应用数学》
CSCD
2011年第4期442-449,458,共9页
Pure and Applied Mathematics
关键词
哈密顿线图
D-闭迹
几乎无桥
Hamiltonian line graph, D-circuits, almost brideless graph