摘要
研究了一类不可微多目标广义分式规划问题.首先,在广义Abadie约束品性条件下,给出了其真有效解的Kuhn-Tucker型必要条件.随后,在(C,α,ρ,d)-凸性假设下给出其真有效解的充分条件.最后,在此基础上建立了一种对偶模型,证明了对偶定理.得到的结果改进了相关文献中的相应结论.
In this paper, we consider a class of nondifferentiable multiobjective generalized fractional programming problems. We present the Kuhn-Tucker type necessary condition for properly efficient solution, under the assumption of a kind of generalized Abadie constraint qualification. And then, the Kuhn-Tucker type sufficient condition for properly efficient solution is given under the assumptions of (C, a, p, d)-convex function. Subsequently, we apply these optimality conditions to formulate a kind of duality model and duality theorems are proved. The results extend and improve some of the existence results in relative articles.
出处
《纯粹数学与应用数学》
CSCD
2011年第4期477-485,共9页
Pure and Applied Mathematics
基金
国家自然科学基金(10831009)
重庆师范大学博士启动基金(10XLB015)
关键词
多目标广义分式规划
最优性条件
约束品性
广义凸函数
对偶定理
multiobjective generalized fractional programming, optimality conditions, constraint qualification, generalized convexity, duality theorems