期刊文献+

一类多目标广义分式规划问题的最优性条件和对偶 被引量:4

Optimality and duality for a class of multiobjective generalized fractional programming problems
下载PDF
导出
摘要 研究了一类不可微多目标广义分式规划问题.首先,在广义Abadie约束品性条件下,给出了其真有效解的Kuhn-Tucker型必要条件.随后,在(C,α,ρ,d)-凸性假设下给出其真有效解的充分条件.最后,在此基础上建立了一种对偶模型,证明了对偶定理.得到的结果改进了相关文献中的相应结论. In this paper, we consider a class of nondifferentiable multiobjective generalized fractional programming problems. We present the Kuhn-Tucker type necessary condition for properly efficient solution, under the assumption of a kind of generalized Abadie constraint qualification. And then, the Kuhn-Tucker type sufficient condition for properly efficient solution is given under the assumptions of (C, a, p, d)-convex function. Subsequently, we apply these optimality conditions to formulate a kind of duality model and duality theorems are proved. The results extend and improve some of the existence results in relative articles.
作者 高英
出处 《纯粹数学与应用数学》 CSCD 2011年第4期477-485,共9页 Pure and Applied Mathematics
基金 国家自然科学基金(10831009) 重庆师范大学博士启动基金(10XLB015)
关键词 多目标广义分式规划 最优性条件 约束品性 广义凸函数 对偶定理 multiobjective generalized fractional programming, optimality conditions, constraint qualification, generalized convexity, duality theorems
  • 相关文献

参考文献10

  • 1Schmittendorf W E. Necessary conditions and sufficient conditions for minimax problems[J]. Journal of Mathematical Analysis and Applications, 1977,57:683-693.
  • 2Yadav S R, Mukherjee R N. Duality for fractional minimax programming problems[J]. Journal of Australian Mathmatical Society, Series B, 1998,31:482-492.
  • 3Liu J C, Wu C S. On minimax fractional optimality conditions with Invexity[J]. Journal of Mathematical Analysis and Applications, 1998,219:21-35.
  • 4Liu J C, Wu C S. On minimax fractional optimality conditions with (F, p)-Covexity[J]. Journal of Mathe- matical Analysis and Applications, 1998,219:36-51.
  • 5Liang Z A, Shi W Z. Optimality conditions and duality for a minimax fractional programming with gener- alized convexity[J]. Journal of Mathematical Analysis and Applications, 2003,277:474-488.
  • 6Yang X M, Hou S H. On minimax fractional optimality and duality with generalized convexity[J]. Journal of Global Optimization, 2005,31:235-252.
  • 7罗和治,吴惠仙,朱艺华.一类不可微广义分式规划的K-T型必要条件[J].运筹学学报,2006,10(1):99-106. 被引量:3
  • 8Yuan D H, Liu X L, Chinchuluun A, et al. Nondifferentiable minimax fractional programming problems with (C, a, p, d)-convexity[J]. Journal of Optimization Theory and Application, 2006,129:185-199.
  • 9Gao Y, Rong W D. Optimality conditions and duality for multiobjective generalized fractional programming with generalized convexity[J]. Pacific Journal of Optimization, 2009,5:403-413.
  • 10Chen X H. Optimality and duality for the multiobjective fractional programming with the generalized (F, p)- convexity[J]. Journal of Mathematical Analysis and Applications, 2002,273:190-205.

二级参考文献4

共引文献2

同被引文献26

  • 1Wolfe P. A duality theorem for nonlinear programming [J]. Quart. Appl. Math., 1961,19:239-244.
  • 2Mond B, Weir T. Generalized Concavity and Duality, in: S. Schaible, W. T. Ziemba(Eds), Generalized Concavity in Optimization and Economics [M]. New York: Academic Press, 1981.
  • 3Mangasarian O L. Second and higher-order duality in nonlinear programming [J]. J. Math. Anal. Appl., 1975,51:607-620.
  • 4Gulati T R, Divya Agarwal. On Huard type second-order converse duality in nonlinear programming [J]. Appl. Math. ett., 2000,20:105%1063.
  • 5Yang X M, Yang X Q, Teo K L. Higher-order generalized convexity and duality in nondifferentiable multi- objective mathematical programming [J]. J. Math. Anal. Appl., 2004,297:48-55.
  • 6Yang X M, Yang X Q, Teo K L. Huard type second-order converse duality for nonlinear programming [J]. Appl. Math. Lett., 2005,18:205-208.
  • 7Ahmad I, Husain Z, Sarita Sharma. Higher-order duality in nondifferentiable multiobjective programming [J]. Numerical Fhnctional Analysis and Optimization, 2007,28:989-1002.
  • 8Nanda S, Das L N. Pseudo-invexity and duality in nonlinear programming [J]. European Journal of Opera- tional Research, 1996,88:572-577.
  • 9Chandra S, Abha. A note on pseudo-invex and duality in nonlinear programming [J]. European Journal of Operational Research, 2000,122:161-165.
  • 10Yang X M, Yang X Q, Teo K L. Converse duality in nonlinear programming with cone constraints [J]. European Journal of Operational Research, 2006,170:350-354.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部