期刊文献+

基于模糊推理的C^4ISR系统服务发现方法

C^4ISR system service discovery based on fuzzy reasoning
下载PDF
导出
摘要 针对领域模糊信息对C4ISR体系结构分析中服务建模和发现所带来的不利影响,提出了基于模糊推理的C4ISR系统服务发现方法。从体系结构服务相关概念出发,构建C4ISR特定领域的服务模糊本体,在模糊本体的引导下,获取现实系统面向服务的体系结构需求。在此基础上,借助模糊描述逻辑的本体形式化和推理技术发现满足用户要求的系统服务。分析结果表明,该方法不仅可以解决领域模糊信息的建模表示问题,而且能够在有效的时间内为用户提供准确的服务查询结果。 Constrained by the imprecise and uncertain domain knowledge,the service modeling and discovery of C4ISR architecture requirements analysis is a hard work.An approach for C4ISR system service discovery based on fuzzy reasoning was proposed.It suggests that C4ISR requirements elicitation be initiated with building the domain specific service fuzzy ontology according to the Meta Model of DoDAF.With the help of the fuzzy ontology,engineers can reuse the domain knowledge to capture the service oriented architecture requirements of the to-be system.As a result,the C4ISR SOA requirements can be precisely described in Fuzzy Description Logic,which enables a service fuzzy discovery covering the function and quality of service.A detailed analysis demonstrates that the more appropriate result of service discovery will be obtained for the user in a reasonable time.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2011年第4期334-340,共7页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2007AA01Z126)
关键词 模糊推理 服务发现 模糊本体 模糊描述逻辑 fuzzy reasoning service discovery fuzzy ontology fuzzy description logic
  • 相关文献

参考文献11

  • 1US Department of Defense. DoD architecture framework version 2.0 (Volume I-II-III) [S/OL]. (2009- 05). [2011-03-16]. http://www, us. army. mi/suite/ page/454707 MOD Partner.
  • 2冯在文,何克清,李兵,龚平,何扬帆,刘玮.一种基于情境推理的语义Web服务发现方法[J].计算机学报,2008,31(8):1354-1363. 被引量:32
  • 3史忠植,蒋运承,张海俊,董明楷.基于描述逻辑的主体服务匹配[J].计算机学报,2004,27(5):625-635. 被引量:62
  • 4PAOLUCCI M, KAWAMURA T. Matching of web services capabilities [C]. Proceedings of Web Conference(ISWC) ,Berlin: Springer-Verlag,2002.
  • 5GIANCARLO G,LUIS F,MARTEN V. An ontology- based approach for evaluating the domain appropriateness and comprehensibility appropriateness of modeling languages [J]. Journal of Lecture Notes in Computer Science, 2005, 3713(1):691-705.
  • 6MA Zong-min, ZHANG Fu, CHENG Jin-wei,et al. Representing and reasoning on fuzzy UML models: A description logic approach [J]. Expert Systems with Applications, 2011.38(3), 2536-2549.
  • 7朱卫星,王智学,李宗勇,刘影.基于领域知识复用的需求建模[J].解放军理工大学学报(自然科学版),2009,10(1):30-36. 被引量:4
  • 8STOILOS G, STAMOU G, PAN J, et al. Reasoning with very expressive fuzzy description logics [J]. Journal of Artificial Intelligence Research, 2007, 30 (5):273-320.
  • 9JEFF Z P, GIORGOS S, STUART T. Scalable querying services over fuzzy ontologies [C]. Beijing.. Proceedings of Semantic / Data Web-Semantic Web Conference, 2008.
  • 10李春梅,蒋运承.具有QoS约束的语义Web服务发现的研究[J].计算机科学,2007,34(6):116-121. 被引量:18

二级参考文献55

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部