期刊文献+

一类改进的高斯-赛德尔迭代法的比较性定理

A New Comparison Theorem for the Preconditioned Gauss-Seidel Iterative Method
下载PDF
导出
摘要 讨论了改进的高斯-赛德尔迭代法的收敛性.若系数矩阵为非奇异不可约M?矩阵,则该预条件下高斯-赛德尔迭代法收敛的快慢取决于原高斯-赛德尔迭代法谱半径的大小.同样,在该预条件下高斯-赛德尔迭代法的谱半径大小与其他高斯-赛德尔迭代法的谱半径大小有关. In this paper, the convergence analysis for a new preconditioned method was discussed. If the coefficient matrix is a nonsingular irred convergence rate of this iterative method depends on the spectral radius of the method. Likewise, the spectral radius of the preconditioned Gauss-Seidel Gauss-Seidel iterative ucible M-matrix, the original Gauss-Seidel iterative method also depends on one of the preconditioned Gauss-Seidel methods. Finally, some numerical examples are given to explain our theoretical results.
作者 黄湧辉
出处 《五邑大学学报(自然科学版)》 CAS 2011年第3期19-22,共4页 Journal of Wuyi University(Natural Science Edition)
关键词 谱半径 预条件迭代法 非奇异不可约M-矩阵 收敛速度 高斯--赛德尔迭代法 spectral radius preconditioned iterative method nonsingular irreducible M-matrix convergence rate Gauss-Seidel iterative
  • 相关文献

参考文献3

  • 1KOHNO T, KOTAKEMORI H, NIKI H. Improving modified iterative methods for Z-matrices[J]. Liner Algebra and Its Application, 1997, 267:113-123.
  • 2宋永忠.线性方程组迭代解法[M].南京:南京师范大学出版社.1992:37.
  • 3LI Wen, SUN Weiwei. Modified Gauss-Seidel type methods and Jacobi type methods[J]. Linear Algebra and Its Application, 2000, 317: 227-240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部