摘要
讨论了改进的高斯-赛德尔迭代法的收敛性.若系数矩阵为非奇异不可约M?矩阵,则该预条件下高斯-赛德尔迭代法收敛的快慢取决于原高斯-赛德尔迭代法谱半径的大小.同样,在该预条件下高斯-赛德尔迭代法的谱半径大小与其他高斯-赛德尔迭代法的谱半径大小有关.
In this paper, the convergence analysis for a new preconditioned method was discussed. If the coefficient matrix is a nonsingular irred convergence rate of this iterative method depends on the spectral radius of the method. Likewise, the spectral radius of the preconditioned Gauss-Seidel Gauss-Seidel iterative ucible M-matrix, the original Gauss-Seidel iterative method also depends on one of the preconditioned Gauss-Seidel methods. Finally, some numerical examples are given to explain our theoretical results.
出处
《五邑大学学报(自然科学版)》
CAS
2011年第3期19-22,共4页
Journal of Wuyi University(Natural Science Edition)