期刊文献+

恒星光谱数据分类规则挖掘系统研究 被引量:2

Research on the Mining System of Classification Rules for Star Spectrum Data
下载PDF
导出
摘要 针对恒星光谱数据的处理需求,采用约束概念格作为恒星自动分类手段,利用Visual C++6.0和Oracle10g作为系统开发的工具,设计并实现了恒星光谱数据的自动分类系统,在介绍系统的功能模块和体系结构的基础上,详细描述了系统的关键技术。系统的运行结果表明,利用约束概念格来实现恒星光谱数据的自动分类,是可行的和有价值的。 The classification system for star spectra data is designed and implemented by using the constrained concept lattices as star spectra data auto-classification means.At the same time,its software architecture and function modules were outlined,and the key techniques were discussed in details.The running results show that it is feasible and valuable for auto-classification to classify automatically star spectra data through constrained concept lattice.
作者 马洋
出处 《太原科技大学学报》 2011年第4期269-273,共5页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(2010011021-2)
关键词 恒星光谱 数据挖掘 约束概念格 自动分类 star spectrum data mining constrained concept lattice auto classification
  • 相关文献

参考文献6

二级参考文献67

共引文献30

同被引文献20

  • 1BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market : Generalizing association rules to correlations [ C ]//Processing of the ACM SIGMOD Conference 1997. New York:ACM Press,1997:265-276.
  • 2SAVASERE A, OMIECINSKI E, NAVATHE S. Mining for Strong Negative Rules for Statistically Dependent Items ~ C ]//Proc of ICDM' 02, Maebashi ,2002:442-449.
  • 3DO TRONG DINH THAC, LAURENT ANNE, TERMIER ALEXANDRE. PGLCM: Efficient parallel mining of closed frequent gradual itemsets [ C ]//IEEE International Conference on Data Mining, Sydney, Australia, 2010 : 138-147.
  • 4ZHOU JIAYI,YU KUNMING, WU BINCHANG. Parallel frequent patters mining algorithm on GPU [ C ]//Conference Proceed- ings-IEEE International Conference on Systems,Man and Cybernetics. 2010:435-440.
  • 5AGRAWAL R,IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases[ C]//Proc of lth Int Conf on Management of Data, Washington DC, USA, 1993:207-216.
  • 6AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of 1 th Int Conf on Management of Data, Washington DC, USA, 1993:207-216.
  • 7JIAWEI Han,JIAN Pei, YIWEN Yin, et al. Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach [ J ]. Data Mining and Knowledge Discovery ,2004,8 (1):53-87.
  • 8EHUD GUDES, SOLOMON EYAL SHIMONY, NATALIA VANETIK. Discovering Frequent Graph Patterns Using Disjoint Paths [ J ]. IEEE Transactions on Knowledge and Data Engineering ,2006,18 ( 11 ) : 1441-1456.
  • 9CLAUDIO LUCCHESE, SALVATORE ORLANDO, RAFFAELE PEREGO. Fast and Memory Ettieient Mining of Frequent ClosedItemsets [ J ]. IEEE Transactions on Knowledge and Data Engineering,2006,18 (1) :21-36.
  • 10DO TRONG. PGLCM: Efficient Parallel Mining of Closed Frequent Gradual Itemsets [ C ]//IEEE International Conference on Data Mining. Australia, Sydney ,2010 : 138-147.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部