期刊文献+

基于圆壳区域伸缩的空间知识表示

Represention of Spatial Knowledge Based on Round Shell Region Extension and Shrinking
下载PDF
导出
摘要 区域连接演算RCC(region connection calculs)是定性空间推理的重要理论之一,但由于缺乏必要的定量工具,RCC只能描述空间拓扑关系,而不能描述距离、方向等其他空间关系。在RCC理论的基础上,引入区域圆壳概念对区域伸缩加以度量,得出一种以区域为单位的形式化度量方法,来描述区域间的距离关系、方向关系,从而增强RCC的空间关系表示能力,拓展了RCC理论的适用范围。 Reg ion connection calculus (RCC) is one of the important fundamental theories in qualitative spatial reasoning . Lacking necessary quantitative tools, RCC only describe spatial topological relations, and don' t describe other spatial relations such as distance, direction and so on. Based on the RCC theory, round shell region is introduced to measure region extension and shranking .Consequently it find a kind to region for the formal measurement method of the unit to describe multiple spatial relations including distances, directions. Thereby it improves the expressive power of RCC and extends the applicable range of RCC.
出处 《毕节学院学报(综合版)》 2011年第8期5-11,共7页 Journal of Bijie University
基金 广西研究生教育创新计划资助项目"基于圆壳区域伸缩的空间知识表示"成果之一 项目编号:201010602701M41
关键词 区域连接演算 空间关系 区域伸缩 RCC Region Extension and Shranking Spatial Relation
  • 相关文献

参考文献4

  • 1Cohn A G,Hazarika SM.Qualitative spatial representation and reasoning[J].An Overview Fundamental Informatics ,2001,46(1-2): 1-29.
  • 2A. Varzi.Parts, wholes, and part-whole relations: The prospects of mereotopology [J]. Data Knowledge Engrg, 1996, 20 (3): 259-286.
  • 3Stell J G. Boolean connection algebras: A new approach to the region-connection calculus [J]. Artificial Intelligence, 2000, (122): 111-137.
  • 4刘一松,詹永照,孙亚民.基于区域伸缩的空间关系表示[J].计算机科学,2008,35(4):211-215. 被引量:3

二级参考文献13

  • 1王生生,刘大有.定性空间推理中区域连接演算的多维扩展[J].计算机研究与发展,2004,41(11):1954-1958. 被引量:6
  • 2Cohn A G, Hazarika S M. Qualitative spatial representation and reasoning: An overview. Fundamental Informatics, 2001, 46 (1- 2) : 1-29
  • 3Andrew U F. Qualitative spatial reasoning: cardinal directions as an example. International Journal Geographical Information Systems, 1996, 10(3): 269-290
  • 4Eliseo C, Paolino F, Daniel H. Qualitative representation of positional information. Artificial Intelligence, 1997, 95(2): 317-356
  • 5Randell D, Cui Z, Cohn A G. A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W,eds. Proc. of the Knowledge Representation and Reasoning. San Mateo: Morgan Kauimann, 1992. 165-176
  • 6Cohn A G, Bennett B, Gooday J, et al. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica, 1997, 1(1): 1-44
  • 7Cohn A G, Varzi A. Mereotopological Connection. Journal of Philosophical Logic, 20032,32:357-399
  • 8Shariff A R, Egenhofer M, Mark D. Natural-Language spatial relations between linear and areal Objects: the topology and metric of english-language terms. International Journal of Geographical Information Science, 1998, 12(3): 215-246
  • 9Cristani M. The Complexity of Reasoning About Spatial Congruence. Journal of Artificial Intelligence Research, 1999, 11:361-390
  • 10Cristani M, Cohn A G, Bennett B. Spatial Locations via Morpho- Mereology. In: Proc. of the Principles of Knowledge Representation and Reasoning (KR2000), Breekenridge, Colorado, 2000. 15-25

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部