摘要
运用Nevanlinna亚纯函数理论方法,研究了超越亚纯函数的值分布理论,获得了如下结论,设f(z)为复平面上的超越亚纯函数,a为非零有穷复数,n和k是任意的正整数,且n≥2,则超越亚纯函数f(k)(z)+a(f(k+1))n取每一个有穷复数无穷多次,并推广了相关定理。
By using Nevanlinna's theory on meromorphic function,and studing value distribution theory of transcendental meromorphic function, this paper obtained the following conclusion: Let f (z) be a tran- scendental meromorphic function in the complex plane, a be a nonzero finite complex constant number,n and k were positive integer, and and n≥2 then the atranscendental meromorphic function f^(k)(z)+a(f^(f+1))^n assumes every finite complex number in finitely often, improving the relative theorems.
基金
贵州省科学技术基金资助项目"复微分方程解的复振荡研究"
项目编号:2010GZ43286
贵州省教育厅科研基金资助项目"高阶线性微分方程解的不动点的研究"
项目编号:2007079
贵州民族学院科研基金资助项目"复微分方程解的复振荡研究"
关键词
亚纯函数
超越亚纯函数
值分布
NEVANLINNA理论
Meromorphic Function
Atranscendental Meromorphic Function
Value Distribution
Nevanlinna Theory