期刊文献+

基于EMD和Hilbert变换的自发脑电信号特征提取 被引量:1

EEG Feature Extraction Based on Empirical Mode Decomposition and Hilbert Transform in Brain Computer Interface
下载PDF
导出
摘要 在脑机接口研究中,针对脑电信号的特征提取,提出一种基于EMD的Hilbert变换的方法。在变换过程中根据信号的局部特征自动选择基函数,求得信号在每个时间段的希尔波特谱;以时频窗口内的统计特性作为特征,利用Fisher距离选择最佳特征集输入分类器。最后利用BCI 2003竞赛数据,通过对特征矢量的可分性和识别精度两个指标的评估,表明了所提出方法的有效性。 In the study of brain computer interfaces,a method based on empirical mode decomposition (EMD) and Hilbert transformation was proposed. The method was used for the feature extraction of electroencephalogram. In this method, the basis function was selected automatically according to the local features of signal during the transforming process, the Hilbert spectrum was obtained in each period, and the statistical characteristics in time-frequency window were considered as features. Then the optimal feature sets were formed by the Fisher distance rule and put into the classification. The performance of the eigenvector was evaluated by separability and recognition accuracy with the data set of BCI 2003 competition,and classification results proved the effectiveness of the proposed method.
出处 《北京生物医学工程》 2011年第4期381-386,共6页 Beijing Biomedical Engineering
基金 上海市教育委员会重点学科建设项目(J51902) 上海市教委晨光计划项目(09CG69)资助
关键词 脑机接口 脑电信号 经典模态分解 希尔伯特变换 特征提取 brain computer interface electroencephalogram empirical mode decomposition Hilbert transformation feature extraction
  • 相关文献

参考文献10

  • 1Guger C,Neuper C,Walterspacher D,et al.Rapid prototyping of an EEG-based brain-computer interface (BCI)[J].IEEE Trans Neural Syst Rehab Eng,2001,9(1):49-58.
  • 2Lal TN,Schrder M,Hinterberger T,et al.Support vector channel selection in BCI[J].IEEE Trans Neural Syst Rehab Eng,2004,5(6):1003-1010.
  • 3Pfurtscheller G,Neuper C,Schlogl A,et al.Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters[J].IEEE Trans Rehab Eng,1998,6(3):316-325.
  • 4Millán J.Adaptive brain interfaces[J].Commun ACM,2003,46:74-80.
  • 5Millán J,Mouri(n~)o J.Asynchronous BCI and local neural classifiers:An overview of the adaptive brain interface project[J].IEEE Trans Neural Syst Rehab Eng,2003,11:159-161.
  • 6Schroeder M,Bogdan M,Rosenstiel W,et al.Automated EEG feature selection for brain computer interfaces[C].Proc 1st int IEEE EMBS Conf Neural Eng,2003:626-629.
  • 7Garrett D,Peterson DA,Anderson CW,et al.Comparison of linear,nonlinear,and feature election methods for EEG signal classification[J].IEEE Trans Neural Syst Rehab Eng,2003,11(2):141-144.
  • 8Srinivas M,Patnaik LM.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J].IEEE Trans on Sys Man and Cybe,1994,24(4):656-667.
  • 9Wang HY.Nonstationary random signal analysis and processing[M].Beijing:Defence Industry Press,1999.
  • 10Mao KZ,Tan KC,SerW.Probabilistic neural-network structure determination for pattern classification[J].IEEE Tran Neural Networks,2000,11(4):1010-1017.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部