摘要
分层组播是现实网络环境中流媒体分发的必要手段,在分层组播中应用网络编码可以进一步提高组播的吞吐量。但是,已有的基于网络编码的分层组播机制仅仅考虑了单个媒体源的情形,对于网络中同时存在多个媒体源的场景则缺乏研究。采用遗传算法解决网络编码条件下的多源分层组播的吞吐量优化问题,通过把握源间和层间编码机会,有效提高了网络带宽利用率。仿真实验表明,与传统的分层组播策略相比,文章所提出的优化算法可以有效提高多源分层组播的吞吐量。
Layered muhicast is the necessary way to distribute streaming media in real network environment, and using network coding in layered muhicast can further improve muhieast throughput. However, existing layered muhicast methods based on network coding have only considered single source media and are lack of research on multiple source meidia. This paper solves optimization problems of layered muhieast throughput with multiple source media using genetic algorithm based on network coding. The application of different source media coding and different layer coding can improve bandwidth utilization more efficiently. Simulation results illustrate that the optimization algorithm of layered multieast throughput with multiple source media proposed in this paper is superior to traditional layered multicast methods.
出处
《信息工程大学学报》
2011年第4期422-427,451,共7页
Journal of Information Engineering University
基金
国家863计划资助项目(2008AA01A323)
关键词
分层组播
网络编码
遗传算法
layered multicast
network coding
genetic algorithm