期刊文献+

基于核的Fisher分类在PolSAR图像的应用

Implementation of Fisher Classification with Kernels in PolSAR Images
下载PDF
导出
摘要 提出了利用核函数挖掘物理散射信息,提取极化特征的Fisher分类方法。该方法在Freeman分解的基础上,采用核函数将极化协方差等信息映射到某特征空间,然后在特征空间中进行线性分类,这样能够从PolSAR数据特有的极化散射信息出发,较好利用核方法的优势,改善不同地物类别的可分性。实验表明,该算法能获取有效的分类结果,实现同类相聚,异类分离,具有良好的紧致性。 In this paper, a classification scheme using the kernel function to deal with fully polafimetric SAR images is proposed. Based on the Freeman decomposition, this algorithm introduces one kind of kernel functions and maps the polarimetric coherency matrix elements into feature space, where linear classification could be implemented. By this way, the classification can take advantage of the kernel method and improve the separability of different classes based on physical characteristics of PoLSAR images. Experimental results show the algorithm allows the full exploitation of the information present in the polarimetric image while providing fine performance and good compactness.
出处 《信息工程大学学报》 2011年第4期473-477,499,共6页 Journal of Information Engineering University
关键词 极化分解 核函数 Fisher分类 极化SAR 极化协方差矩阵 polarimetric decomposition kernel function Fisher classification polarimetric SAR polarimetric covariance matrix
  • 相关文献

参考文献8

  • 1Freeman A, Durden S L. A Three-Component Scattering Model for Polarimetric SAR Data[ J]. IEEE Transactions on Geosience and Remote Sensing, 1998, 30(3) : 532-539.
  • 2Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[ J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
  • 3Freeman A, Durden S L. A three component scattering model for polarimetric SAR dara[ J]. IEEE Transcation on Geoscienee and Remote Sensing, 1998, 36(3) : 963-973.
  • 4Freeman A, Jakob J, Van Zyl J, et al. Calibration of Stokes and Scattering Matrix Format Polarimetrix SAR Data[ J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3) :531-539.
  • 5杨国鹏,余旭初,周欣,冯伍法.基于广义判别分析的高光谱影像特征提取[J].大连海事大学学报,2008,34(3):59-63. 被引量:7
  • 6Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels[ J]. Neural Networks for Signal Processing IX, 1999, 29(6): 41-48.
  • 7Billings S A, Zheng G L. Radial basis function networks configuration using genetic algorithms[ J]. Neural Networks, IEEE Transactions, 1999,10( 1 ) : 48-55.
  • 8Lee J S, Grunes M R, Grandi G De. Polarimetric SAR speckle fihering and its implication for classification[ J]. IEEE Transcations on Geoscience and Remote Sensing, 1999, 37 (5) : 2363-2373.

二级参考文献4

  • 1高秀梅,杨静宇,金忠,陈才扣.基于核的Foley-Sammon鉴别分析与人脸识别[J].计算机辅助设计与图形学学报,2004,16(7):962-967. 被引量:10
  • 2JOHN S T, NELLO C. Kernel Methods for Pattern Analysis[M]. Cambridge: Cambridge University Press, 2004:1- 24.
  • 3BAUDAT G , ANOUAR F. Generalized discriminant analysis using a kernel approach [ J ]. Neural Computation, 2000,12(10):2385-2404.
  • 4HOFFBECK J P, LANDGREBE D A. Classification of remote sensing images having high spectral resolution[J]. Remote Sensing of Environment, 1996,57 (3):119-126.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部