期刊文献+

基于PCA和分块FFT的快速模板匹配算法 被引量:1

Fast template matching algorithms based on PCA and blocking FFT
下载PDF
导出
摘要 图像匹配算法作为一种经典的图像识别算法,在计算机底层视觉处理中占有重要地位。在理论界,对该算法的讨论和研究由来已久,也提出了基于像素灰度、基于图像特征等的匹配算法。本文所提出的匹配算法主要基于模板特征,通过结合主分量分析(PCA)、分块快速傅里叶变换(FFT)等技术实现了高效快速的图像匹配算法。在对具有大量相似目标的图像进行检测的应用中,该算法取得了良好的效果。 As one of the classic image recognition algorithms, image matching algorithm plays an important role in computer low-level vision technology. In theoretical field, discussions and studies of the algorithm have a long history, and some algorithms based on image pixel gray level or image features have been proposed. The matching algorithm proposed in this paper is mainly based on template features and by using the combination of technologies including Principal Component Analysis(PCA) and blocking Fast Fourier Transform(FFT) to implement fast algorithm. In the application of detection of large amount of similar objects in an image, this algorithm has achieved good results.
出处 《信息与电子工程》 2011年第4期483-486,490,共5页 information and electronic engineering
关键词 主分量分析 分块FFT 图像匹配 模板匹配 图像处理 Principal Component Analysis blocking FFT(Fast Fourier Transform) image matching template matching image processing
  • 相关文献

参考文献11

  • 1Wei Shou-Der, Lai Shang-Hong. Robust and Efficient Image Alignment Based on Relative Gradient Matching[J]. IEEE Transactions on Image Processing, 2006,15(10):2936-2943.
  • 2Uenohara M,Kanade T. Use of Fourier and Karhuncn-Loeve Decomposition for Fast Pattern Matching with a Large Set of Templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(8):891-898.
  • 3Lee Wen-Chia,Chen Chin-Hsing. A Fast Template Matching Method for Rotation Invariance Using Two-Stage Process[C]// Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kyoto:[s.n.], 2009.
  • 4Sunyawit Sassanapitak,Pakorn Kaewtrakulpong. An Efficient Translation-Rotation Template Matching Using Pre-Computed Scores of Rotated Templates[C]//ECTI-CON 2009. Pattaya, Chonburi:[s.n.], 2009:1040-1043.
  • 5Fukunaga K. Introduction to Statistical Pattern Recognition[M]. Boston:Academic Press, 1990.
  • 6吕文涛,吕高焕.SIFT算法在雷达图像匹配中的应用[J].信息与电子工程,2010,8(4):388-392. 被引量:14
  • 7Yoshimura S,Kanade T. Fast Template Matching Based on the Normalized Correlation by Using Multiresolution Eigen- images[C]//Proc. IROS'94. Munich, Germany:[s.n.], 1994.
  • 8陈松柏.实时的归一化相关匹配算法[J].信息与电子工程,2006,4(6):461-463. 被引量:10
  • 9Choi Min-Seok,Kim Whoi-Yul. A novel two-stage template matching method for rotation and illumination invariance[J]. .Pattern Recognition, 2002,35(1):119-129.
  • 10Arif Mahmood,Sohaib Khan. Exploiting Transitivity of Correlation for Fast Template Matching[J]. IEEE Transactions on Image Processing, 2010,19(8):1-11.

二级参考文献12

  • 1张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 2[1]Venkateswarlu R,Er M H,Gan Y H,et al.Area-correlation tracker with improved reliability[A].Proceedings of SPIE[C].1997,3086:244-253.
  • 3[4]Briechle Kai.Template Matching using Fast Normalized Cross Correlation,Optimal Pattern Recognition Ⅻ[A].Proceeding of SPIE[C].2001,4387:95-102.
  • 4David G Lowe.Distinctive image features from Scale-invariant keypoints[J].International Journale of Computer Vision,2004,60(2):91-110.
  • 5David G Lowe.Object recognition from local scale-invariant features[C] // International Conference on Computer Vision.USA:IEEE Computer Society Washington,1999:1150.
  • 6Thomas Tsao,Laveen Kanal.A scene registration method based on a dynamical receptive field model of biological vision[J].Pattern Recognition Letters.1999,20(11-13):1423-1430.
  • 7孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 8张绍明,陈映鹰,林怡.用于末制导的SAR图像多子区实时匹配算法[J].测绘学报,2007,36(4):406-413. 被引量:9
  • 9刘学东,贾玉林,孔昊.相关算法中跟踪稳定性问题的研究[J].红外与激光工程,1998,27(1):9-13. 被引量:23
  • 10陈鹰,李铁军,熊兴华.带约束条件的特征与最小二乘影像匹配[J].中国图象图形学报(A辑),1998,3(4):299-303. 被引量:20

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部