期刊文献+

基于组合特征双重加权的相关反馈算法 被引量:1

Relevance feedback algorithm based on dual weighted combined features
下载PDF
导出
摘要 为自动调节当前检索任务以使最终查询结果朝着有利于用户要求的方向发展,提出一种基于组合特征双重加权的相关反馈算法。将图像检索中初始权重的设定过程作为优化问题,利用量子遗传算法求取全局最优解,作为图像检索过程中各特征初始权重的加权值;另外,在组合特征权重动态调节的过程中,将灰色关联分析理论中的灰关联度作为特征权重的估计值,同时将反馈结果中每幅图像的评价都考虑到灰色关联分析的计算中,从而来估计不同特征在检索中的相对重要性。实验结果表明,本文算法能够达到精炼检索结果的目的,大幅提高检索全面性和检索准确度。 In order to adjust the retrieval task for accommodating the query results to user's quest, a relevance feedback algorithm based on dual weighted combined feature is proposed in this paper. Firstly, the setting of initial weight in retrieval is conducted as optimization problem. The global optimum solution obtained from quantum genetic algorithm is used as weighted value of initial weight of each feature. Then in the process of dynamic modulating combined feature weight, grey relation degree is used as estimated value of feature weight. Also the evaluation of each image in feedback results is calculated into grey relation analysis that estimates the relative importance of different features in retrieval. The experimental results indicate that the proposed algorithm can achieve the aim of refining retrieval results, and can enhance retrieval comprehensiveness and retrieval precision largely.
出处 《信息与电子工程》 2011年第4期491-496,共6页 information and electronic engineering
基金 中央高校基本科研业务费专项资金资助项目(HEUCFR1117) 哈尔滨市科技创新人才研究专项资金资助项目(2011RFXXG028)
关键词 组合特征 相关反馈 量子遗传 灰关联度 combined feature relevance feedback quantum genetic grey relation degree
  • 相关文献

参考文献15

  • 1Rocchio J J. Relevance feedback in information retrieval[J]. The Smart Retrieval System: Experiments in Automatic Document Processing, 1971:313-323.
  • 2Rui Y,Huang T S,Mehrotra S. Content-based image retrieval with relevance feedback in MARS[C]// Proceedings of International Conference on Image Processing. Santa Barbara:[s.n.], 1997,812:815-818.
  • 3Niall Rooney,David Patterson,Mykola Galushka,et al. A relevance feedback mechanism for cluster-based retrieval[J]. Information Processing & Management, 2006,42,(5): 1176-1184.
  • 4Kherfi M L,Ziou D,Bernardi A. Combining positive and negative examples in relevance feedback for content-based image retrieval[J]. Journal of Visual Communication and Image Representation, 2003,14(4):428-457.
  • 5许相莉,张利彪,刘向东,于哲舟,周春光.基于粒子群的图像检索相关反馈算法[J].电子学报,2010,38(8):1935-1940. 被引量:33
  • 6李丹妮,李百策.一种基于内容图像检索的新的相关反馈方法[J].长春理工大学学报(自然科学版),2009,32(4):639-641. 被引量:1
  • 7Duan Lijuan,Gao Wen,Zeng Wei,et al. Adaptive relevance feedback based on Bayesian inference for image retrieval[J]. Signal Processing, 2005,85(2):395-399.
  • 8崔文成,邵虹.基于遗传算法的图像检索中特征权重自动调整[J].计算机工程与应用,2008,44(2):106-108. 被引量:8
  • 9Tony H. Quantum computing: an introduction. Computing and Control Engineering Journal, 1996,10(3): 105-112.
  • 10宋峻峰,李国辉.信息检索算法评价指标的分析与改进[J].小型微型计算机系统,2003,24(10):1800-1803. 被引量:6

二级参考文献30

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3屈景怡,史浩山.特征结合和相关反馈技术在医学图像检索中的应用[J].电路与系统学报,2006,11(5):80-83. 被引量:7
  • 4Niblack W, Barber R, Equitz W. The QBIC project: Querying images by content using color, texture and shape [J]. In Proc. SPIE Storage and Retrieval for Image and Video Databases, 1993 : 173-187.
  • 5Smith J R, Chang S F. Querying by color regions using the visualSEEK content-based visual query system[ J ].In M T Maybury, editor, Intelligent Multimedia Information Retrieval, 1997( 2 ): 23-41.
  • 6Ortega M, Rui Y, Chakrabarti K, et al. Supporting similarity queries in MARS[ M ]. In Proceedings of the 5th ACM International Multimedia Conference, 1997: 403- 413.
  • 7Wang J Z, Wiederhold G, Wei S X.Wavelet-based image indexing techniques with partial sketch retrieval capability [ M ]. In proceedings of the Fourth Forum on Research and Technology Advances in Digital Libraries, 1997:13-24.
  • 8Cox I J, Minka T P, Papathomas T V, et al. The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments[ J ]. IEEE Transactions on Image Processing, 2000,9( 1 ):20-37.
  • 9Rui Y, Huang T S. Relevance feedback: a power tool for interactive content-based image retrieval[J]. IEEE Circuits and Systems for Video Technology, 1999,8( 5 ):644- 655.
  • 10Rui Y,Huang T S,Mehrotra S.Content-based image retrieval with relevance feedback in MARS .Proceedings of IEEE International Conference on Image Processing .Santa Barbara,CA,USA:IEEE Computer Society,1997.815-818.

共引文献88

同被引文献7

  • 1Zhang D S,Lu G J. Study and evaluation of different Fourier methods for image retrieval[J].Image and Vision Computing,2005,(01):33-49.doi:10.1016/j.imavis.2004.09.001.
  • 2Alajlan N,Kamel M S,Freeman G. Multi-object image retrieval base on shape and topology[J].Signal Processing:Image Communication,2006.904-918.
  • 3Mokhtarian F,Ung Y K,Wang Z T. Automatic fitting of digitized contours at multiple scales through the curvature scale space technique[J].Computers and Graphics,2005,(06):961-971.
  • 4Kunttu I,Lepisto L. Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor[J].IET Image Processing,2007,(02):231-236.doi:10.1049/iet-ipr:20060113.
  • 5Yaday R B,Nishchal N K,Gupta A K. Retrieval and classification of shape-based objects using Fourier,generic Fourier,and wavelet-Fourier descriptors technique:a comparative study[J].Optics and Laser in Engineering,2007,(06):695-708.
  • 6Datta R,Toshi D,Li Jia. Image retrieval ideas influences and trends of the new age[J].ACM Computing Surveys,2008,(02).
  • 7王斌.一种用于形状描述的拱高半径复函数[J].电子学报,2011,39(4):831-836. 被引量:11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部