摘要
收集了玉米样品40份,利用电子鼻技术对样品进行模式识别,并对电子鼻传感器阵列进行优化.结果表明,电子鼻能够对正常与霉变样品进行区分.在优化传感器阵列后,主成分分数较优化前的84.36%提高至97.54%.对测试集的判别采用4种算法(Euclid、Malahanobis、Kohonen和DFA)进行判别,电子鼻判别率较优化前均有不同程度的提高,其中Kohonen法判别率可达90.63%.
In the paper, we collected 40 corn samples, carried out the pattern recognition of the samples using electronic nose technique, and optimized the electronic nose sensor array. The results showed that the electronic nose technique could discriminate the normal sample from the moldy ones. After the sensor array was optimized, the fraction of the principal components was improved from the 84.36% (before optimization) to 97.54%. The test set was discriminated by four algorithms (Euclid, Malahanobis, Kohonen and DFA), and the discrimination rate of electronic nose technique was improved to different degrees in comparison to that before optimization, wherein the discrimination rate of Kohonen algorithm was up to 90.63%.
出处
《河南工业大学学报(自然科学版)》
CAS
北大核心
2011年第4期16-20,共5页
Journal of Henan University of Technology:Natural Science Edition
基金
"十一五"国家科技支撑计划项目:储粮生物挥发物质与储藏品质判定新方法及快速检测技术开发(2009BADA0B00-5)
关键词
玉米
霉变
电子鼻
快速检测
corn
moldy
electronic nose
rapid detection