期刊文献+

用修正后的主方程计算BA模型度分布的探讨 被引量:1

Calculation for Degree Distribution of the Model BA by Amendment of Master Equation
下载PDF
导出
摘要 提出了对原始的Master方程进行修正,加入了节点增长机制,修正后的Master方程具有离散性,能够更精确、更有效地计算真实复杂网络的度分布演化规律.用修正的Master方程分析BA模型度分布的解析式并计算,由此得出BA模型度分布对数图.把离散性的Master方程与连续性的平均场理论进行对比分析,并在同一坐标系下分别作出用2种理论计算的BA模型度分布的对数图. An amendment to the original Master equation and add a mechanism for node increases is be put forward.The modified Master equation is of discreteness,which is more accurate,more efficient to calculate the evolution law of degree distribution of real complex network.The analysis formula of degree distribution of model BA and its calculation by the modified Master equation is discussed.From this we get the logarithmic figure of degree distribution of model BA.Then we make a compassion between the discrete Master equation and mean-field theory,and get logarithmic figure of degree distribution of model BA with two kinds calculative theory in the same coordinate system.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期221-224,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10647120) 河北省教育厅自然科学研究指令项目(2008114)资助
关键词 Master方程 BA模型 度分布 节点增长机制 Master equation the model BA degree distribution mechanism for node increases
  • 相关文献

参考文献8

  • 1Bambasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks [J]. Physica A, 1999, 272: 173-187.
  • 2Shi Dinghua, Chert Qinghua. Markov chain-based numerical method for degree distributions of growing networks [J]. Phys Rev E, 2005, 71: 36140-36148.
  • 3Chen Qinghua, Shi Dinghua. Markov chains theory for scale-free networks [J]. Physica A, 2006, 360: 121-133.
  • 4Chen Qinghua, Sill Dingua. Computation of formation mechanism and degree distribution for growing networks [J]. Journal of Ap- plied Mathematics and Computational Mathematics, 2005(6): 30-35.
  • 5He Wenchen, Feng Lei. Time evolution of the degree distribution of model A of random attachment growing networks [J]. Physica A, 2007, 384: 663-666.
  • 6Dorogovtsev S N, Mendes J F F, Samnkhin A N. Structure of Growing Networks with Preferential Linking [J]. Phys Rev Lett, 2000, 85: 4633-4636.
  • 7Dorogovtsev S N, Mendes J F F, Samukhin A N. Size-dependent degree distribution of a scale-free growing network [J]. Phys Rev E, 2001, 63: 62101.
  • 8Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks [J]. Phys Rev Lett, 2000, 85: 4629.

同被引文献8

  • 1Watts D J, Strogatz S H. Collective dynamics of "small- world" networks [ J ]. Nature, 1998,393 (6684) : 440- 442.
  • 2Barabtsi A L, Albert R. Emergence of scaling in random networks [ J ]. Science, 1999,286 (5439) :509-512.
  • 3Latora V, Marchiori M. Is the Boston subway as mall-world network? [ J ] Physica A : Statistical Mechanics and Its Ap- plications ,2002,314(1/2/3/4) : 109-113.
  • 4Wu Jianjun, Gao Ziyou, Sun Huijun, et al. Urban transit system as a scale-free network [ J ]. Modem physics Let- ters B, 2004,18 (19) : 1043-1050.
  • 5Sienkiewicz J, Holyst J A. Statistical analysis of 22 Public transport networks in Poland [ J ]. Physical Review E, 2005,72(4) :046127.
  • 6Seaton K A, Hackett L M. Stations, trains and small-world networks [ J ]. Physica A: Statistical Mechanics and Its Applications, 2004,339 ( 34 ) : 635-644.
  • 7Angeloudis P, Fisk D. Large subway systems as complex networks [ J ]. Physica A: Statistical Mechanics and Its Applications ,2006,367 (5) :553-558.
  • 8李永成,黄曙光,杨斌,郭浩.新浪微博名人堂用户关系网络分析[J].江西师范大学学报(自然科学版),2013,37(4):376-381. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部