期刊文献+

缺失数据的估计方法及应用 被引量:7

The Estimation Method for Missing Data and Its Applications
下载PDF
导出
摘要 应用EM算法的思想在双参数逻辑斯蒂克模型下对存在缺失数据的参数估计方法和恢复缺失数据的统计插补方法进行研究.蒙特卡洛模拟和实证研究结果表明,在进行统计插补恢复缺失数据时,该方法使得估计结果比较理想:联合极大似然估计与EM算法相结合,先估计参数,再填补缺失值,再估计,再填补,直到似然函数值稳定. The way to deal with the missing data in large-scale tests attracts the attention from national and international researchers.The present research tries to get the possible responses for the missing data of the candidates based on their partial responses through statistical imputation method,and to estimate their ability theta and item parameters.The parameter estimation method for missing data and the statistical imputation method of getting back missing data are studied under the two-parameter logistic model,with the Monte Carlo simulation applied,and the results on the influence from different percentages of missing data are compared.To investigate the feasibility of statistical imputation method and parameter estimation method,an experimental test has been carried out with the data of English subject from a project in year 2007.The results from the Monte Carlo simulation and the experimental test suggest that it is practical and acceptable to estimate parameters through the combined method of JMLE and EM,and to get back the missing data by applying the statistical imputation method.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期325-330,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(30860084 60263005) 教育部人文社科项目(09YJCXLX012 10YJCXLX049) 江西省研究生创新专项基金资助项目
关键词 缺失数据 蒙特卡洛模拟 模拟作答 联合极大似然估计 EM算法 missing data Monte Carlo simulation simulate response jointly maximum likelihood estimation EM algorithm
  • 相关文献

参考文献9

  • 1Lord F M. Estimation of latent ability and item parameters when there are omitted responses [J]. Psychometrika, 1974, 39: 247-264.
  • 2Mislevy R J, Wu P. Missing response and IRT ability estima- tion: omits, ehoice, time limits, and adaptive testing [J]. Princeton NJ: Educational Testing Service, 1996.
  • 3De Ayala R J, Plake B S, Impara J C. The impact of omittod responses on the accuracy of ability estimation in item re- sponse theory [J]. Journal of Educational Measurement, 2001, 38(3): 213-234.
  • 4Lord F M. Application of item response theory to practical testing problems [M]. HiUsdale: Lawrence Erlbaum Associ- ates.
  • 5Wainer H, Thissen D J. On examinee choice in educational testing [J]. Review of Educational Rvsearch, 1994, 64: 159-195.
  • 6Little R J A, Rubin D B. Statistical analysis with missing data [M]. New York: John Wiley & Sons, 2002.
  • 7Graham J W, Cumsille P E, Elek-Fisk E. Methods for han- dling missing data. [M]. New York: John Wiley & Sons, 2003: 87-114.
  • 8Wayman J C. Multiple imputation for missing data: what is it and how can I use it? [EB/OL]. [2010-04-12]. http://www. csis.j hu.cdu/contact/staff/j wayman_pub/wayman_multimp_ar ca2003 .odf.
  • 9Christine Demars. Missing data and IRT item parameter es- timation [M]. Chicago: AERA.

同被引文献53

  • 1吕会强,高连华,陈春良.зрлaнгa分布及其在保障性数据分析中的应用[J].装甲兵工程学院学报,2002,16(3):48-52. 被引量:22
  • 2田兵.缺失数据的单一插补方法[J].阴山学刊(自然科学版),2011,25(3):17-19. 被引量:3
  • 3丁树良,罗芬.双重两步迭代估计及其应用[J].数值计算与计算机应用,2007,28(2):116-123. 被引量:2
  • 4Zhang Yingshan,Lu Yiqiang,Pang Shanqi.Orthogonal arrays obtained by orthogonal decomposition of projection matrices[J].Statistica Sinica,1999,9(2):595-604.
  • 5Wang Xiaodi,Tang Yincai,Chen Xueping,et al.Design of experiment in global sensitivity analysis based on ANOVA high-dimension model representation[J].Communicasions in Statistics-Simulation and Computation,2010,39(6):1183-1195.
  • 6Wang Xiaodi,Tang Yincai,Zhang Yingshan.Orthogonal arrays for the estimation of global sensitivity indices based on ANOVA high-dimension model representation[J].Communicasions in Statistics-Simulation and Computation,2011,40(9):1324-1341.
  • 7顾蓓青,王蓉华,徐晓岭.艾拉姆咖分布的统计分析[C]//2011年全国机械行业可靠性技术学会暨第四届可靠性工程分会第三次全体委员大会论文集,2011:65-67.
  • 8茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].2版.北京:高等教育出版社,2011.
  • 9陈盼盼.缺失数据下半参数变系数部分线性模型的统计推断[D].北京:北京工业大学,2012.
  • 10曾洁关.数据缺失处理在"绿色矿山"中的应用[D].马鞍山:安徽工业大学.2012.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部