期刊文献+

KC_n的分解与K[X]上不可约多项式的对应关系

Corresponding Between Decomposition of KCn and Irreducible Polynomials on K[x]
下载PDF
导出
摘要 本文主要证明当K是有理数域Q的扩域,Cn是n阶循环群时,正则模KCn分解为不可约KCn—模的直和与多项式xn-1分解为K[x]上不可约多项式的乘积之间的一一对应关系。对每个直和因子V,计算出HomKCn(V,V)的具体结构,以及利用上述模分解与多项式分解的对应关系证明当标量域K作有限正规扩张时,对应不可约直和因子必裂成若干维数相等且互不同构的直和因子。 In this paper We prove that when K is an extension of the rational field Q and Cn is a cylic group, there is a one to one corresponding between the decomposition of regular module KC into direct sums of irreducible left KCn-modules and the factorization of x^n-1 on K[x].For every irreducible component V,We calculate the structure of HomKC (V,V).By using of this kind of corresponding, We also prove that when L/K is Galois extension, every irreducible component of KCn,if not absolutely irreducible, must split into some new components under the field extension such that they have the same dimension as irreducible LCn--modules.
作者 唐诗昂
出处 《中国科教创新导刊》 2011年第22期83-84,共2页 CHINA EDUCATION INNOVATION HERALD
关键词 群环 扩域 循环群 半单代数 直和分解 group rings field extension cylic groups semi--simple algebras decomposition into direct sums
  • 相关文献

参考文献5

  • 1C.W. Cutis , I.Reiner.Representation theory of finite groups associative algebras[M]. New York: Interscience, 1962.
  • 2Jean-Pierre Serre.Linear Representations of finite groups[M].New York: Springer-Verlag, 1977.
  • 3R. Brauer, J.Tate.On the characters of finite groups[J]. Ann. Of Math, 1955, 62:1 -7.
  • 4B, Fein. Representations of direct products of finite groups[J].PacificJ,Math, 1967,20..45 -48.
  • 5L. Solomon.the Repre-sentations of finite groups in algebraic number fields [J].Math. Soc. Japan, 1967, 13: 144- 164.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部