期刊文献+

基于BP神经网络的机载数字高程模型压缩 被引量:1

Compression of Airborne Digital Elevation Model Based on BP Neural Network
下载PDF
导出
摘要 现有的数字高程模型压缩方法大多从编码方式上进行优化,而很少利用其数据的自相关性。为此,提出了一种采用L-M训练算法的单隐层BP神经网络实现机载数字高程模型压缩的新方法,并给出了实现压缩的详细过程。论述了采用单隐层网络的理由,并根据机载要求的相对误差精度去选择最少的隐层节点数。通过选取ASTERGDEM30米分辨率的高精度数字高程模型进行了大量仿真,验证了所提方法的可行性和实用性。 The current compression of airborne Digital Elevation Model(DEM) is optimized mostly by coding method,and is seldom optimized by self-correlation of DEM.A new compression method of airborne DEM is presented,which is based on the Single Hidden Layer Back-Propagation(BP) neural network adopting Levenberg-Marquardt(LM) training algorithm,and the compression process is given in detail.The advantage of a single hidden layer network superior to the multi hidden layer network is discussed,and the least hidden nodes are selected to get the maximum compression ratio based on the relative error of the actual onboard accuracy required.The validity and feasibility of this method are verified by simulation.
出处 《航空工程进展》 2011年第3期339-343,共5页 Advances in Aeronautical Science and Engineering
基金 航空科学基金(08C53011)
关键词 数字高程模型压缩 BP神经网络 L-M算法 机载 digital elevation model compression back-propagation neural network Levenberg-Marquardt airborne
  • 相关文献

参考文献6

  • 1吴学文,孙延奎,唐龙.基于JPEG2000的DEM数据无损压缩[J].计算机应用研究,2004,21(1):240-242. 被引量:6
  • 2毛可标,苏玉扬.DEM的数据格式及压缩编码[J].测绘科技动态,1994,55(4):2-6. 被引量:4
  • 3王志祥.基于小波变换的三维地形数据压缩方法研究[D]南京理工大学,南京理工大学2007.
  • 4Toledo A,Pinzolas M.Improvement of the neighborhood based Levenberg-Marquardt algorithm by local adaptation of the learning coefficient. IEEE ACM Transactions on Networking . 2005
  • 5Shlomo Geva,Joaquin Sitte.A constructive method for multivariate function approximation by multilayer perceptrons. IEEE ACM Transactions on Networking . 1992
  • 6Atef A Elassal,Vincent M Caruso.USGS Digital Car-tographic Data Standards: Digital Elevation Models. Geological Survey Circular 895-B . 1983

二级参考文献1

共引文献8

同被引文献27

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部