期刊文献+

一种求解鲁棒优化问题的多目标进化方法 被引量:5

Evolutionary multi-objective approach for solving robust optimization problem
下载PDF
导出
摘要 鲁棒优化问题(Robust Optimization Problem,ROP)是进化算法(Evolutionary Algorithms,EAs)研究的重要方面之一,对于许多实际工程优化问题,通常需要得到鲁棒最优解。利用多目标优化中的Pareto思想优化ROP的鲁棒性和最优性,将ROP转化为一个两目标的优化问题,一个目标为解的鲁棒性,一个目标为解的最优性。针对ROP与多目标优化的特点,利用动态加权思想,设计一种求解ROP的多目标进化算法。通过测试函数的实验仿真,验证了该方法的有效性。 Robust Optimization Problem(ROP) is one of the most important parts of Evolutionary Multiobjective Optimiza-tion(EMO).For most practical engineering optimization problems,the aim of them is to obtain robust optimal solutions.In this paper,the concept of Pareto in multiobjective optimization is employed to deal simultaneously with robustness and opti-mality.Therefore,a ROP is transformed into a biobjective problem,one of which is the robustness of solution and the other is the optimality of solution.Combining the characteristics of ROP and multi-objective optimization,a Multi-Objective Evolu-tionary Algorithm(MOEA) for solving ROPs is designed by dynamic weight strategy.By the several experiments on two ROP test problems,the results demonstrate that the proposed evolutionary multi-objective approach is efficient.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第24期58-61,76,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773047) 湖南省自然科学基金(No.09JJ6089) 湖南省教育厅重点科研项目(No.06A074) 湖南省教育厅一般项目(No.07C752)~~
关键词 鲁棒优化问题 多目标进化算法 干扰 鲁棒性 最优性 Robust Optimization Problem(ROP) Multi-Objective Evolutionary Algorithm(MOEA) disturbance robustness optimality
  • 相关文献

参考文献10

  • 1Zitzler E,Thiele L.Multiobjective evolutionary algorithms: a com- parative case study and the strength pareto approach[J].IEEE Trans- actions on Evolutionary Computation, 1999,3 (4) : 257-271.
  • 2Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjec- tive genetic algorithm:NSGA-II[J].IEEE Transactions on Evolu- tionary Computation,2002,6(2) : 182-197.
  • 3Jin Y,Branke J.Evolutionary optimization in uncertain envn-on- ments-a survey[J].IEEE Transactions on Evolutionary Computa- tion, 2005,9 ( 3 ) : 303-317.
  • 4Branke J,Creating robust solutions by means of evolutionary algorithms[C]//Eiben A E.LNCS 1498: Parallel Problem Solving from Nature,PPSN, 1998: 119-128.
  • 5Tsutsui S, Ghosh A.Genetic algorithm with a robust solution searching scheme[J].IEEE Transactions on Evolutionary Computation, 1997,1 (3) :201-219.
  • 6Jin Y, Sendhoff B.Trade-off between performance and robustness: an evolutionary multiobjeetive approach[C]//EMO,2003:237-251.
  • 7Deb K, Gupta H.Searching for robust Pareto-optimal solutions in multi-objective optimization[C]//LNCS 3410:Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization, EMO-2005, Guanajuato, Mexico, 2005:150-164.
  • 8郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 9Luo Biao,Zheng Jinhua,Xie Jiongliang, et al.Dynamic crowding distance-a new diversity maintenance strategy for MOEAs[C]// The 4th International Conference on Natural Computation,ICNC'08, Jinan,China, 18-20 Oct 2008:580-585.
  • 10Mckay M D, Beckman R J, Conover W J.A comparison of three methods for the selecting values of input variables in the analysis of out put from a computer code[J].Technometrics, 1979,21:239-245.

二级参考文献15

  • 1Coello Coello CA,Van Veldhuizen DA,Lamont GB.Evolutionary Algorithms for Solving Multi-Objective Problems.Kluwer Acedemic/Plenum Publishers,2002.
  • 2Coello Coello CA,Lamont GB.Applications of Multi-Objective Evolutionary Algorithms.Singapore:World Scientific,2004.
  • 3Corne DW,Jerram NR,Knowles JD,Oates MJ.PESA-Ⅱ:Region-Based selection in evolutionary multiobjective optimization.In:Proc.of the Genetic and Evolutionary Computation Conf.(GECCO 2001).Morgan Kaufmann Publishers,2001.283-290.
  • 4Knowles JD,Corne DW.Approximating the nondominated front using the Pareto archived evolution strategy evolutionary computation.Evolutionary Computation,2000.149-172.
  • 5Aguirre AH,Rionda SB,Coello Coello CA,Lizáraga GL,Montes EM.Handling constraints using multiobjective optimization concepts.Int'l Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
  • 6Fonseca CM,Fleming PJ.An overview of evolutionary algorithms in multi-objective optimization.Evolutionary Computation,1995,3(1):1-16.
  • 7Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization.In:Proc.of the 1st IEEE Conf.on Evolutionary Computation.Piscataway:IEEE Service Center,1994.82-87.
  • 8Zitzler E,Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach.IEEE Trans.on Evolutionary Computation,1999,3(4):257-271.
  • 9Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength pareto evolutionary algorithm for multiobjective optimization.In:Giannakoglou K,et al.,eds.Proc.of the EUROGEN 2001-Evolutionary Methods for Design,Optimisation and Control with Applications to Industrial Problems.2001.95-100.
  • 10Deb K,Pratap A,Agrawal S,Meyrivan T.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ.IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.

共引文献53

同被引文献63

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部