摘要
通过对Ad Hoc网络QoS组播路由问题的深入研究,提出了一种融合量子粒子群优化和蚁群优化的群智能混合算法(QPSOACO算法)。该算法融合QPSO思想以加速蚁群算法在路由发现及维护时的收敛速度,进一步提高算法对网络节点移动性的适应能力。仿真实验表明,该算法对Ad Hoc网络环境的适应性良好。
Based on the study in the QoS multicast routing problem of Ad Hoc network,a hybrid algorithm of Quantum-behaved Particle Swarm Optimization and Ant Colony Optimization(QPSOACO algorithm) is proposed.The algorithm is ap-plied in the establishment and maintenance of Ad Hoc network multicast routing process to accelerate the convergence rate of ant colony algorithm and remain effective as mobility increases.The simulation results show that the algorithm performs effectively in dynamic environments of Ad Hoc network.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第24期73-76,共4页
Computer Engineering and Applications
基金
教育部高等学校科技创新工程重大培育项目
江南大学博士启动基金(No.1055211542080380)