期刊文献+

基于参照物的三维重建策略 被引量:1

Three-dimensional reconstruction Method Based on Reference objects
下载PDF
导出
摘要 传统的三维重建一般是由待重建物体的图像信息求解空间参数,但实际中待重建物体由于其复杂结构很难得到准确的结果。本文提出一种由图像中特征显著的参照物作为标尺进而对待测物体进行重建的策略。该策略首先采用水平集分割算法分割出作为参照物物体特征点集,然后采用GASAC遗传算法估计基础矩阵,从而完成目标物体或全景的三维重建。文中对相关算法进行了改进和调整,提出了参照物的选取算法。最后实验证明,该策略避免了误差特征点的干扰,可以应用于一些复杂情况下的重建,且能保证获得重建理想效果。 The traditional three-dimensional reconstruction is to solve space parameter by the image information of reconstruction object,but the actual reconstruction of the object is difficult to get the accurate space parameter because of its complex structure.This paper presents a reconstruction strategy by the significant features of the image.This strategy first extracts feature point by level set segmentation algorithm and set about reference,then uses GASAC genetic algorithm to estimate fundamental matrix,thus completes the reconstruction of the objects.Correlation algorithms have been improved in this paper,this paper also proposes a selection of reference algorithm,finally,the experiments prove the feasibility of this method,which avoids the interference of error feature points,and is usually used in reconstruction in complex cases and receives a satisfactory result.
出处 《微计算机信息》 2011年第8期234-236,共3页 Control & Automation
关键词 基础矩阵 水平集分割 参照物 GASAC 三维重建 fundamental matrix level set segmentation reference GASAC three-dimensional reconstruction
  • 相关文献

参考文献9

  • 1Osher S,Sethian J A.Fronts propagating with curvature dependent speed: algorithms based on Hamilton Jacobi formutations [J].Journal of Computational Physics, 1988,79:12-49.
  • 2S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces[M].Springer Verlag,2002.
  • 3F. Precioso, M. Barlaud, T. Blu, et al, Smoothing B-spline active contour for fast and robust image and video segmentation [ C ] , Proc. ICIP, Sept 2003.
  • 4Volker Rodehorst and Olaf Hellwich.Genetic Algorithm Sample Consensus (GASAC)-a parallel strategy for robust parameter estimation.In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) [C],2006.
  • 5侯庭波,朱枫,史泽林.基于变量含误差模型估计基础矩阵[J].微计算机信息,2008(12):199-201. 被引量:1
  • 6陈康,苏晓龙,王香婷.基于区域增长的立体匹配算法研究[J].微计算机信息,2009,25(6):309-311. 被引量:6
  • 7Zhang Z.ANewMultistageApproach toMotion and Structure Estimation:From Essential Parameters to Euclidean Motion via Fundamental Matrix [R]. France:INRIA Sophia-Antipolis,1996.
  • 8周春艳,钟键,邹峥嵘.影像匹配的一种新算法[J].微计算机信息,2010,26(29):12-14. 被引量:1
  • 9H.C.Longuet-Higgins.A computer algorithm for reconstructing a scene from two projections[J], Nature,September. 1981,293:133-135.

二级参考文献18

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3Linda G. Shapiro, George C. Stockman. Computer Vision. Beijing: Mechanic Industry Publishing Company, 2005.
  • 4[1]Longuet-Higgins,A Computer Algorithm for Reconstructing a Scene from Two Projections,Nature 293,pp.133-135,1981
  • 5[2jR.I.Hartley,In Defense of the Eight-point Algorithm,IEEE Trans on Pattern Analysis & Machine Intelligence,vol.19,no.6,pp.580-593,1997.
  • 6[3]Quan,L,O.D.,Faugeras,The Fundamental Matrix:Theory,Algorithms,and Stability Analysis,Int J.Computer Vision,Vol.17,No.1,pp.43-76,1996.
  • 7[4]W.A.Fuller,Measurement Errors Models,Wiley,New York,1987.
  • 8[5]Bogdan,M.,Peter,M.,A General Method for Errors-in-Variables Problems in Computer Vision.In.Proc.IEEE Conf.on Computer Vision and Pattern Recognition,Vol.2.pp.18-25,2000
  • 9[6]W.Chojnacki.etc.,A Fast MLE-based Method for Estimating for the Fundamental Matrix,Proc.Int.Conf.on Image Processing,vol.2,pp.189-192,2001
  • 10[7]W.Chojnacki,etc,From FNS to HEIV:A Link between Two Vision Parameter Estimation Methods,IEEE Trans on Pattern Analysis & Machine Intelligence,vol.26,no.2,pp.264-268,2004

共引文献5

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部