期刊文献+

叶片前缘旋流和常规冲击对比数值研究 被引量:10

Numerical investigation on difference between blade leading edge vortex and normal impingement cooling
下载PDF
导出
摘要 为了寻求更好的叶片前缘内冷结构,对旋流冲击和常规冲击的流动和传热特性进行了数值模拟,对比研究了二者的涡流结构、传热强度、流动阻力、综合传热性能和热均匀性,研究了通道Re数和冲击间距对这些参数的影响。结果表明旋流冲击形成的旋涡有利于传热的增强和热均匀性的提高。在所研究的Re数(2×104~7.78×104)和冲击间距(3.3~5倍直径)范围内,旋流冲击与常规冲击相比平均传热增强18%~34%,增幅随Re数和冲击间距的增大而增大;流阻增大10%~26%,增幅随Re数和冲击间距的增大而减小;综合传热性能增强20%左右;热均匀性提高60%左右。 Numerical simulations for the flow and heat transfer of vortex and normal impingement cooling on the internal channel of blade leading edge were carried out to find better cooling configuration.Comparisons were made between these two cooling forms in such aspects as vortex structure,heat transfer enhancement,pressure loss,thermal performance and thermal uniformity.The influences of Reynolds numbers and spaces between impingement holes on these parameters were studied.Results show that the heat transfer rate is enhanced and the thermal uniformity is improved by the swirl flow created by vortex impingement.Comparing vortex impingement with normal impingement at the range of Reynolds number from 2×104 to 7.78×104 and spaces between impingement holes from 3.3 to 5 times diameter,the averaged heat transfer rate is increased by 18%~34%,and the increment goes up with the increase of Reynolds number and impingement spacing.Pressure loss is increased by 10%~26%,and the increment goes down with the increase of Reynolds numbers and impingement spaces.The thermal performance parameter is increased by 20%,and the thermal uniformity is improved by 60%.
出处 《推进技术》 EI CAS CSCD 北大核心 2011年第4期576-580,585,共6页 Journal of Propulsion Technology
关键词 冲击冷却 旋流冲击冷却+ 传热系数 流动阻力 热均匀性+ Impingement cooling Vortex impingement cooling+ Heat transfer rate Pressure loss Thermal uniformity+
  • 相关文献

参考文献9

  • 1HedlundCR,LigraniPM,GlezerB,etal.HeattransferinaswirlchamberatdifferenttemperatureratiosandReynoldsnumbers[J].InternationalJournalofHeatandMassTransfer,1999,42(6):4081-4091.
  • 2HedlundCR,LigraniPM,GlezerB,etal.Heattransferandflowphenomenainaswirlchambersimulatingturbinebladeinternalcooling[J].ASMEJ.ofTurbomachinery,1999,121(4):804-813.
  • 3HedlundCR,LigraniPM.LocalswirlchamberheattransferandflowstructureatdifferentReynoldsnumbers[J].ASMEJ.ofTurbomachinery,2000,122(3):375-385.
  • 4Glezer B , H K Moon , J Kerrebrock , et al. Heat transfer in a rotating radial channel with swirling internal flow [ C ]. Stockholm: ASME 43rd International Gas Turbine and Aeroengine Congress and Exposition, 1998.
  • 5Glezer B, Moon H K, Connell T O. A novel technique for the internal blade cooling [ R ].Birmingham : International Gas Turbine and Aeroengine Congress and Exposition, 1996.
  • 6Glezer B , Lin T, Moon H K. An improved turbine cooling system [P]. U.S. :5603606, 1997.
  • 7John P C W L, Ireland P T, Harvey N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection [ R]. ASME 2006-GT-90352.
  • 8Bengt Sunden, Jerome Larocque . Simulation of heat transfer from swirling impinging jets [ R]. ASME 2005- GT-68896.
  • 9Ligrani P M, Oliveira M M, Blaskovich T. Comparison of heat transfer augmentation techniques [ J ]. AIAA Journal, 2003, 41(3),337-362.

同被引文献80

  • 1杨成凤,张靖周.气膜孔内置扰动条作用下的射流-横流流场[J].推进技术,2009,30(1):30-33. 被引量:2
  • 2孙润鹏,朱卫兵,陈昌将,陈宏.阵列射流冲击冷却传热特性的数值研究[J].热科学与技术,2012,11(1):34-41. 被引量:8
  • 3蒋雪辉,赵晓路.非定常尾迹对叶片头部气膜冷却的影响[J].航空动力学报,2005,20(4):540-544. 被引量:11
  • 4王奉明,张靖周,王锁芳.不同形状扰流柱矩形通道内流动特性研究[J].航空学报,2007,28(1):37-41. 被引量:17
  • 5Youn J Kim, S M Kim. Influence of Shaped InjectionHoles on Turbine Blade Leading Edge Film Cooling [J]. International Journal of Heat and Mass Transfer, 2004, 47: 245-256.
  • 6Ali Rozati, Danesh K Tafti. Elect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer-LES Investigation [J]. International Jour- nal of Heat and Fluid Flow, 2008, 29:857-873.
  • 7M Ehendale A B, Han J C. Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer [R]. A SME 902GT29, 1990.
  • 8Saludean M, Gartshore I, Zhang K, et al. An Experimen- tal Study of Film Cooling Effectiveness Near the Leading Edge of a Turbine Blade [J]. Journal of Trbomachinery, 1994, 116(1): 71-79.
  • 9Lin Y L, Shih T. Film Cooling of a Cylindrical Leading Edge With Injection Through Rows of Compound Angle Holes [J]. Journal of Heat Transfer, 2001, 123(4): 645-654.
  • 10Blair M F. Influence of Free Stream Turbulence on 2hrbu- lent Boundary Layer Heat Transfer Mean Profile Develop- ment Partl-ExPerimental Data [J]. ASME Journal of Heat Transfer. 1983. 105:33 44.

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部