期刊文献+

动态边界条件下一类强阻尼波动方程解的爆破 被引量:3

A Study of the Blow-Up for a Class of Strong-Damped Wave Equation with Dynamic Boundary Conditions
下载PDF
导出
摘要 考虑了一类具有Kelvin-Voigt阻尼的波动方程.运用位势井理论,通过构造稳定集和不稳定集,结合能量分析的方法,首先证明了当初值属于稳定集时,该问题存在整体解;其次证明了强阻尼项的存在使得问题的解一致趋近于零,且具有指数衰减速率;最后给出了解在有限时间爆破的充分必要条件. In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions related to the Kelvin-Voigt damping.By combining the potential well method and energy analysis method and constructing stable and unstable sets,we prove that the global solution exists if the initial data are in the "stable set" and that under the presence of the strong damping the solutions uniformly approach zero at an exponential decay rate.Finally,we give the necessary and sufficient conditions for the solution blow up in finite time.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第7期10-15,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11001189) 重庆大学创新人才培养工程"211第三期工程"(s-09110)
关键词 Kelvin-Voigt阻尼 NEHARI流形 指数衰减速率 爆破 Kelvin-Voigt damping Nehari manifold exponential decay rate blow up
  • 相关文献

参考文献12

  • 1TODOROVA G, VITILLARO E. Blow Up for Nonlinear Dissipative Wave Equations in Rn[J].J Math Anal Appl, 2005, 303(1): 242 -257.
  • 2LIU K, LIU Z. Exponential Decay of Energy of Vibrating Strings with Local Viscoelasticity[J].Z Angew Math Phys, 2002, 53(2): 265 -280.
  • 3CHEN S, LIU K, LIU Z. Spectrum and Stability for Elastic Systems with Global or Local Kelvin Voigt Damping [J]. SIAM J Appl Math, 1999, 59(2) : 651--668.
  • 4DORONIN G G, LARKIN N A. Global Solvability for the Quasilinear Damped Wave Equation with Nonlinear Second- Order Boundary Conditions[J]. Nonlinear Anal, 2002, 8: 1119--1134.
  • 5PELLICER M, MORALES J S. Spectral Analysis and Limit Behaviours in a Spring-Mass System[J]. Comm Pure Appl Anal, 2008, 7(3): 563--577.
  • 6GAZZOLA F, SQUASSINA M. Global Solutions and Finite Time Blow Up for Damped Semilinear Wave Equations [J]. Ann IH Poineare-AN, 2006, 23: 185--207.
  • 7GERBI S, HOUARI B S. Asymptotic Stability and Blow Up for a Semilinear Damped Wave Equation with Dynamic Boundary Conditions [EB/OL]. (2008-- 11-- 17) [-2009- 11-- 15]. http://arxiv. org/abs/0811. 2783.
  • 8GERBI S, HOUARI B S. Local Existence and Exponential Growth for a Semilinear Damped Wave Equation with Dy- namic Boundary Conditions[J].Adv Diff Equ, 2008, 13(11-- 12) : 1051-- 1074.
  • 9ADAMS R A. Sobolev Spaces [M]. New York:Academic Press, 1975.
  • 10PAYNE L E, SATTINGER D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations[J]. Israel J Math, 1975, 22(3--4): 273 -303.

同被引文献21

  • 1呼青英,张宏伟.混合Cable-Mass动力系统的一致稳定性[J].动力学与控制学报,2007,5(1):27-29. 被引量:2
  • 2Xian W,Chen S X,Kaimin T.On variational methods fora class of damped Vibration problems[J].Nonlinear Anal,2008,68:1432-1441.
  • 3Rabinowitz P H.On subharmonic solutions of Hamiltoniansystems[J].Comm Pure Appl Math,1980,33:609-633.
  • 4Mawhin J,Willem M.Critical point theory and Hamiltoniansystems[M].Berlin/New York:Springer-Verlag,1989.
  • 5Tao Z L,Tang C L.Periodic and subharmonic solutions ofsecond order Hamiltonian systems[J].J Math Amal Appi,2004,293:435-445.
  • 6Tang C L,Wu X P.Periodic solutions for a class of non-au-tonomous subquadratic second order Hamiltonltonian sys-tems[J].J Math Anal Appi,2002,275:870-882.
  • 7Tang C L.Periodic solutions for non-autonomous second or-der systems with sublinear nonlinearity[J].Proc AmerMath Soc,1998,126:3263-3270.
  • 8Tang C L,Wu X P.Periodic solutions for second order sys-tems with not uniformly coercive potential[J].J Math AnalAppl,2001,259:386-397.
  • 9Wu X P,Tang C L,Periodic solutions of class of non-auton-omous second order systems[J].J Math Anal Appl,1999,236:227-235.
  • 10Rabinowz P H.Minimax methods in point theory with ap-plications to differential equations[C] //CBMS Reg Conf:Ser In Math,American Mathematical Society,Providence.RI.1986,65:86-87.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部