期刊文献+

结合图像梯度和亮度的并行信任传播算法

Parallel Belief Propagation Algorithm Conjugating Gradient and Intensity
下载PDF
导出
摘要 对立体匹配问题建立马尔可夫随机场模型,使用并行的多尺度信任传播算法求解马尔可夫随机场的能量最小化问题.在传统串行算法基础上利用CUDA技术实现了并行计算,并结合图像的梯度和亮度信息计算能量函数的数据项,平滑项采用两个相邻像素视差的绝对差度量.以标准的Middlebury立体数据集做为输入,实验结果表明:算法具有很好的实时性能,运行时间远小于传统的串行算法,深度图结果较优. Stereo matching is critical technology in vision measurement.MRF models are established to do with stereo problem.A parallel multi-scale belief propagation algorithm is used for MRF energy minimization and generating disparity map.Parallel algorithm is implemented based on traditional sequential algorithm with CUDA technology.In energy function,data term is conjugated with Gradient and intensity of images,smooth term is measured with the absolute difference of disparities between two adjacent pixels.With standard Middlebury stereo data sets as input,experiments show that the proposed algorithm has good real-time performance,running time is much less than the traditional sequential algorithm and the generated disparity map is excellent.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第9期70-72,76,共4页 Microelectronics & Computer
关键词 计算机视觉 立体匹配 马尔可夫随机场 信任传播 并行计算 computer vision stereo matching Markov random field belief propagation parallel computing
  • 相关文献

参考文献8

  • 1Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window.- theory and experiment[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1994, 16(9):920-932.
  • 2黄江波.一种自适应遗传算法及其应用[J].微电子学与计算机,2010,27(9):193-196. 被引量:6
  • 3黄华,张小锋,江泽涛.一种双目视觉的匹配模板优化方法[J].微电子学与计算机,2009,26(3):13-16. 被引量:3
  • 4Felzenszwalb P F, Huttenlocher D P. Efficient belief propagation for early vision[J]. IJCV, 2006, 70(1):41 -54.
  • 5Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11)..1222 - 1239.
  • 6NVIDIA. NVIDIA CUDA C programming guide version 3.2[EB/OL]. [2010-11-9]. http://www, nvidia. com/object/cuda.
  • 7Scharstein D, Szeliski R A Taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. Int'l J. Computer Vision, 2002, 47(1/3):7-42.
  • 8Szeliski R, Zabih R, Scharstein D, et al. A comparative study of energy minimization methods for markov random fields[J]. IEEE Trans. PAMI, 2008, 30(6) :1068 - 1080.

二级参考文献10

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部